Transactions in GIS . Vol 25 n° 3Paru le : 01/06/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierMask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan / Dirk Tiede in Transactions in GIS, Vol 25 n° 3 (June 2021)
[article]
Titre : Mask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan Type de document : Article/Communication Auteurs : Dirk Tiede, Auteur ; Gina Schwendemann, Auteur ; Ahmad Alobaidi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1213-1227 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] échantillonnage
[Termes IGN] épidémie
[Termes IGN] gestion de crise
[Termes IGN] HRV (capteur)
[Termes IGN] image à très haute résolution
[Termes IGN] image Pléiades-HR
[Termes IGN] itération
[Termes IGN] SoudanRésumé : Auteur) Within the constraints of operational work supporting humanitarian organizations in their response to the Covid-19 pandemic, we conducted building extraction for Khartoum, Sudan. We extracted approximately 1.2 million dwellings and buildings, using a Mask R-CNN deep learning approach from a Pléiades very high-resolution satellite image with 0.5 m pixel resolution. Starting from an untrained network, we digitized a few hundred samples and iteratively increased the number of samples by validating initial classification results and adding them to the sample collection. We were able to strike a balance between the need for timely information and the accuracy of the result by combining the output from three different models, each aiming at distinctive types of buildings, in a post-processing workflow. We obtained a recall of 0.78, precision of 0.77 and F1 score of 0.78, and were able to deliver first results in only 10 days after the initial request. The procedure shows the great potential of convolutional neural network frameworks in combination with GIS routines for dwelling extraction even in an operational setting. Numéro de notice : A2021-464 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12766 Date de publication en ligne : 06/05/2021 En ligne : https://doi.org/10.1111/tgis.12766 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98060
in Transactions in GIS > Vol 25 n° 3 (June 2021) . - pp 1213-1227[article]GIS.LSP: A soft computing logic method and tool for geospatial suitability analysis / Shuoge Shen in Transactions in GIS, Vol 25 n° 3 (June 2021)
[article]
Titre : GIS.LSP: A soft computing logic method and tool for geospatial suitability analysis Type de document : Article/Communication Auteurs : Shuoge Shen, Auteur ; Suzana Dragićević, Auteur ; Jozo Dujmović, Auteur Année de publication : 2021 Article en page(s) : pp 1228-1248 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse multicritère
[Termes IGN] croissance urbaine
[Termes IGN] densité du bâti
[Termes IGN] gestion urbaine
[Termes IGN] implémentation (informatique)
[Termes IGN] interface utilisateur
[Termes IGN] logique
[Termes IGN] projet urbain
[Termes IGN] système d'information géographique
[Termes IGN] Vancouver (Colombie britannique)Résumé : (Auteur) This research study extends the Logic Scoring of Preference (LSP) as a general multicriteria evaluation (MCE) method by presenting and evaluating a new GIS.LSP method and software tool implemented within the geographic information systems (GIS) environment. For the evaluation and validation of the method and software tool, we describe a case study of urban densification suitability analysis using geospatial data for the Metro Vancouver Region, Canada. The criteria, LSP structures, and aggregators groups were developed from the perspective of urban developers who are key stakeholders in the densification process. We compare two group of aggregators and perform sensitivity and cost–suitability analysis of the LSP method by variation of input suitability scores, input attributes, and aggregators. The results indicate the GIS.LSP method is effective in providing a flexible and sensitive workflow to create realistic and justifiable outcomes from complex criteria that are bounded by stakeholders' goals and requirements. Numéro de notice : A2021-465 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12768 Date de publication en ligne : 16/05/2021 En ligne : https://doi.org/10.1111/tgis.12768 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98076
in Transactions in GIS > Vol 25 n° 3 (June 2021) . - pp 1228-1248[article]Simulating multi-exit evacuation using deep reinforcement learning / Dong Xu in Transactions in GIS, Vol 25 n° 3 (June 2021)
[article]
Titre : Simulating multi-exit evacuation using deep reinforcement learning Type de document : Article/Communication Auteurs : Dong Xu, Auteur ; Xiao Huang, Auteur ; Joseph Mango, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1542-1564 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] apprentissage par renforcement
[Termes IGN] distribution spatiale
[Termes IGN] itinéraire piétionnier
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal profondRésumé : (Auteur) Conventional simulations on multi-exit indoor evacuation focus primarily on how to determine a reasonable exit based on numerous factors in a changing environment. Results commonly include some congested and other under-utilized exits, especially with large numbers of pedestrians. We propose a multi-exit evacuation simulation based on deep reinforcement learning (DRL), referred to as the MultiExit-DRL, which involves a deep neural network (DNN) framework to facilitate state-to-action mapping. The DNN framework applies Rainbow Deep Q-Network (DQN), a DRL algorithm that integrates several advanced DQN methods, to improve data utilization and algorithm stability and further divides the action space into eight isometric directions for possible pedestrian choices. We compare MultiExit-DRL with two conventional multi-exit evacuation simulation models in three separate scenarios: varying pedestrian distribution ratios; varying exit width ratios; and varying open schedules for an exit. The results show that MultiExit-DRL presents great learning efficiency while reducing the total number of evacuation frames in all designed experiments. In addition, the integration of DRL allows pedestrians to explore other potential exits and helps determine optimal directions, leading to a high efficiency of exit utilization. Numéro de notice : A2021-466 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Numéro de périodique nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12738 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1111/tgis.12738 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98085
in Transactions in GIS > Vol 25 n° 3 (June 2021) . - pp 1542-1564[article]