Carbon Balance and Management . vol 16Paru le : 01/02/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierModeling land use change and forest carbon stock changes in temperate forests in the United States / Lucia Fitts in Carbon Balance and Management, vol 16 ([01/02/2021])
[article]
Titre : Modeling land use change and forest carbon stock changes in temperate forests in the United States Type de document : Article/Communication Auteurs : Lucia Fitts, Auteur ; Matthew B. Russell, Auteur ; Grant M. Domke, Auteur ; Joseph F. Knight, Auteur Année de publication : 2021 Article en page(s) : n° 20 (2021) Langues : Anglais (eng) Descripteur : [Termes IGN] changement d'occupation du sol
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] forêt tempérée
[Termes IGN] Géorgie (Etats-Unis)
[Termes IGN] impact sur l'environnement
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] puits de carbone
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] Wisconsin (Etats-Unis)
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Background : Forests provide the largest terrestrial sink of carbon (C). However, these C stocks are threatened by forest land conversion. Land use change has global impacts and is a critical component when studying C fluxes, but it is not always fully considered in C accounting despite being a major contributor to emissions. An urgent need exists among decision-makers to identify the likelihood of forest conversion to other land uses and factors affecting C loss. To help address this issue, we conducted our research in California, Colorado, Georgia, New York, Texas, and Wisconsin. The objectives were to (1) model the probability of forest conversion and C stocks dynamics using USDA Forest Service Forest Inventory and Analysis (FIA) data and (2) create wall-to-wall maps showing estimates of the risk of areas to convert from forest to non-forest. We used two modeling approaches: a machine learning algorithm (random forest) and generalized mixed-effects models. Explanatory variables for the models included ecological attributes, topography, census data, forest disturbances, and forest conditions. Model predictions and Landsat spectral information were used to produce wall-to-wall probability maps of forest change using Google Earth Engine.
Results : During the study period (2000–2017), 3.4% of the analyzed FIA plots transitioned from forest to mixed or non-forested conditions. Results indicate that the change in land use from forests is more likely with increasing human population and housing growth rates. Furthermore, non-public forests showed a higher probability of forest change compared to public forests. Areas closer to cities and coastal areas showed a higher risk of transition to non-forests. Out of the six states analyzed, Colorado had the highest risk of conversion and the largest amount of aboveground C lost. Natural forest disturbances were not a major predictor of land use change.
Conclusions : Land use change is accelerating globally, causing a large increase in C emissions. Our results will help policy-makers prioritize forest management activities and land use planning by providing a quantitative framework that can enhance forest health and productivity. This work will also inform climate change mitigation strategies by understanding the role that land use change plays in C emissions.Numéro de notice : A2021-501 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE Nature : Article DOI : 10.1186/s13021-021-00183-6 Date de publication en ligne : 03/07/2021 En ligne : https://doi.org/10.1186/s13021-021-00183-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98099
in Carbon Balance and Management > vol 16 [01/02/2021] . - n° 20 (2021)[article]