ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 179Paru le : 01/09/2021 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2021091 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
081-2021093 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2021092 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierTarget-based automated matching of multiple terrestrial laser scans for complex forest scenes / Xuming Ge in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
[article]
Titre : Target-based automated matching of multiple terrestrial laser scans for complex forest scenes Type de document : Article/Communication Auteurs : Xuming Ge, Auteur ; Qing Zhu, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 13 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de données localisées
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] densité de la végétation
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] scène forestière
[Termes IGN] semis de pointsRésumé : (Auteur) Terrestrial laser scanners are widely used to derive unbiased and non-destructive estimates of the vertical distribution of the plant area index and plant area volume density at plot-level scales, as well as the above-ground biomass, height, and diameter at breast height of individual trees. Multiple scans are often employed to capture and register data so that all of the stems can be detected and their complete forms can be analyzed. Researchers have traditionally preferred target-less strategies to register scans because of their low cost and convenience. However, in complex forest scenes, even state-of-the-art approaches cannot guarantee the success of any pairwise registration. In this study, we present an automated target-based processing approach for the registration of unordered scans in complex forest scenes. In contrast to previous studies, the proposed registration method automatically detects the artificial targets and builds a geometric network to judge their connectivity. A pose graph is then exploited to combine these data with the corresponding pairwise transformation, and then the scans are integrated into a unified coordinate system. This method is more robust and efficient than target-less approaches because it is independent of the characteristics of individual trees and does not require ground information. In an experimental scenario, we use an extremely complex wild bamboo forest scene to evaluate the performance of the proposed approach in terms of robustness, accuracy, and efficiency. Numéro de notice : A2021-573 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.06.019 Date de publication en ligne : 15/07/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.06.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98173
in ISPRS Journal of photogrammetry and remote sensing > vol 179 (September 2021) . - pp 1 - 13[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021091 SL Revue Centre de documentation Revues en salle Disponible 081-2021093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A deep translation (GAN) based change detection network for optical and SAR remote sensing images / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
[article]
Titre : A deep translation (GAN) based change detection network for optical and SAR remote sensing images Type de document : Article/Communication Auteurs : Xinghua Li, Auteur ; Zhengshun Du, Auteur ; Yanyuan Huang, Auteur ; Zhenyu Tan, Auteur Année de publication : 2021 Article en page(s) : pp 14 - 34 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] détection de changement
[Termes IGN] image à très haute résolution
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] méthode robuste
[Termes IGN] polarisation
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal profond
[Termes IGN] zone d'intérêtRésumé : (Editeur) With the development of space-based imaging technology, a larger and larger number of images with different modalities and resolutions are available. The optical images reflect the abundant spectral information and geometric shape of ground objects, whose qualities are degraded easily in poor atmospheric conditions. Although synthetic aperture radar (SAR) images cannot provide the spectral features of the region of interest (ROI), they can capture all-weather and all-time polarization information. In nature, optical and SAR images encapsulate lots of complementary information, which is of great significance for change detection (CD) in poor weather situations. However, due to the difference in imaging mechanisms of optical and SAR images, it is difficult to conduct their CD directly using the traditional difference or ratio algorithms. Most recent CD methods bring image translation to reduce their difference, but the results are obtained by ordinary algebraic methods and threshold segmentation with limited accuracy. Towards this end, this work proposes a deep translation based change detection network (DTCDN) for optical and SAR images. The deep translation firstly maps images from one domain (e.g., optical) to another domain (e.g., SAR) through a cyclic structure into the same feature space. With the similar characteristics after deep translation, they become comparable. Different from most previous researches, the translation results are imported to a supervised CD network that utilizes deep context features to separate the unchanged pixels and changed pixels. In the experiments, the proposed DTCDN was tested on four representative data sets from Gloucester, California, and Shuguang village. Compared with state-of-the-art methods, the effectiveness and robustness of the proposed method were confirmed. Numéro de notice : A2021-574 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.07.007 Date de publication en ligne : 23/07/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.07.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98174
in ISPRS Journal of photogrammetry and remote sensing > vol 179 (September 2021) . - pp 14 - 34[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021091 SL Revue Centre de documentation Revues en salle Disponible 081-2021093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data / Laura Elena Cué La Rosa in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
[article]
Titre : Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data Type de document : Article/Communication Auteurs : Laura Elena Cué La Rosa, Auteur ; Camile Sothe, Auteur ; Raul Queiroz Feitosa, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 35 - 49 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Brésil
[Termes IGN] carte de la végétation
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] densité de la végétation
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] espèce végétale
[Termes IGN] forêt tropicale
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) This work proposes a multi-task fully convolutional architecture for tree species mapping in dense forests from sparse and scarce polygon-level annotations using hyperspectral UAV-borne data. Our model implements a partial loss function that enables dense tree semantic labeling outcomes from non-dense training samples, and a distance regression complementary task that enforces tree crown boundary constraints and substantially improves the model performance. Our multi-task architecture uses a shared backbone network that learns common representations for both tasks and two task-specific decoders, one for the semantic segmentation output and one for the distance map regression. We report that introducing the complementary task boosts the semantic segmentation performance compared to the single-task counterpart in up to 11% reaching an average user’s accuracy of 88.63% and an average producer’s accuracy of 88.59%, achieving state-of-art performance for tree species classification in tropical forests. Numéro de notice : A2021-575 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.07.001 Date de publication en ligne : 28/07/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.07.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98175
in ISPRS Journal of photogrammetry and remote sensing > vol 179 (September 2021) . - pp 35 - 49[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021091 SL Revue Centre de documentation Revues en salle Disponible 081-2021093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt