Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique systématique > Tracheophyta > Spermatophytina > Angiosperme > Dicotylédone vraie > Myrtaceae > Eucalyptus (genre) > Eucalyptus camaldulensis
Eucalyptus camaldulensisSynonyme(s)gommier de Camaldoli gommier des rivières |
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Stand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa / Timothy Dube in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
[article]
Titre : Stand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa Type de document : Article/Communication Auteurs : Timothy Dube, Auteur ; Mbulisi Sibanda, Auteur ; Cletah Shoko, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2017 Article en page(s) : pp 162 - 169 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] cubage de peuplement
[Termes IGN] données auxiliaires
[Termes IGN] écosystème forestier
[Termes IGN] Eucalyptus camaldulensis
[Termes IGN] image SPOT 5
[Termes IGN] KwaZulu-Natal (Afrique du Sud)
[Termes IGN] peuplement forestier
[Termes IGN] régression
[Termes IGN] taillisRésumé : (Auteur) Forest stand volume is one of the crucial stand parameters, which influences the ability of these forests to provide ecosystem goods and services. This study thus aimed at examining the potential of integrating multispectral SPOT 5 image, with ancillary data (forest age and rainfall metrics) in estimating stand volume between coppiced and planted Eucalyptus spp. in KwaZulu-Natal, South Africa. To achieve this objective, Partial Least Squares Regression (PLSR) algorithm was used. The PLSR algorithm was implemented by applying three tier analysis stages: stage I: using ancillary data as an independent dataset, stage II: SPOT 5 spectral bands as an independent dataset and stage III: combined SPOT 5 spectral bands and ancillary data. The results of the study showed that the use of an independent ancillary dataset better explained the volume of Eucalyptus spp. growing from coppices (adjusted R2 (R2Adj) = 0.54, RMSEP = 44.08 m3/ha), when compared with those that were planted (R2Adj = 0.43, RMSEP = 53.29 m3/ha). Similar results were also observed when SPOT 5 spectral bands were applied as an independent dataset, whereas improved volume estimates were produced when using combined dataset. For instance, planted Eucalyptus spp. were better predicted adjusted R2 (R2Adj) = 0.77, adjusted R2Adj = 0.59, RMSEP = 36.02 m3/ha) when compared with those that grow from coppices (R2 = 0.76, R2Adj = 0.46, RMSEP = 40.63 m3/ha). Overall, the findings of this study demonstrated the relevance of multi-source data in ecosystems modelling. Numéro de notice : A2017-643 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.09.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.09.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87002
in ISPRS Journal of photogrammetry and remote sensing > vol 132 (October 2017) . - pp 162 - 169[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017103 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Mapping individual tree health using full-waveform airborne laser scans and imaging spectroscopy: A case study for a floodplain eucalypt forest / Iurii Shendryk in Remote sensing of environment, vol 187 (15 December 2016)
[article]
Titre : Mapping individual tree health using full-waveform airborne laser scans and imaging spectroscopy: A case study for a floodplain eucalypt forest Type de document : Article/Communication Auteurs : Iurii Shendryk, Auteur ; Mark Broich, Auteur ; Mirela G. Tulbure, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 202 - 217 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Australie
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] dépérissement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Eucalyptus (genre)
[Termes IGN] Eucalyptus camaldulensis
[Termes IGN] inondation
[Termes IGN] spectrométrieRésumé : (auteur) Declining forest health can affect crucial ecosystem functions, such as carbon storage in biomass and soils, the regulation of water regimes, the modulation of regional climate and conservation of biodiversity. Airborne laser scanning (ALS) and imaging spectroscopy (IS) are two potentially complementary remote sensing technologies capable of characterizing and monitoring regional forest health. However, the combined use of ALS and IS data to classify the health of individual trees has not yet been assessed. In this study we propose a new approach utilizing ALS and IS combined to characterize the health of individual trees. Firstly, we applied a recently developed bottom-up individual tree delineation algorithm across a structurally complex floodplain eucalypt forest that has experienced episodes of severe dieback over the past six decades. We further calculated ALS and IS indices for delineated tree crowns and used them as predictor variables in machine learning models. We trained and evaluated an object-oriented random forest classifier against field-measured tree crown dieback and transparency ratios, as indicators of eucalypt tree health and crown density, respectively. Our results showed that dieback levels of individual trees can be classified using ALS and IS with an overall accuracy of 81% and a kappa score of 0.66, while the classification of tree crown transparency levels had an overall accuracy of 70% and a kappa score of 0.5. Returned pulse width, intensity and density related ALS indices were the most important predictors in the tree health classification, as they accounted for > 40% of the variance in the data. At the forest level in terms of dieback, 81.5% of correctly delineated trees were classified as healthy, 12.3% as declining and 6.2% as dying or dead. Dieback occurred primarily in areas that were flooded Numéro de notice : A2016-767 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2016.10.014 En ligne : http://dx.doi.org/10.1016/j.rse.2016.10.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82411
in Remote sensing of environment > vol 187 (15 December 2016) . - pp 202 - 217[article]