Silva fennica / Finnish society of forest science (Finlande) . vol 55 n° 4Paru le : 01/09/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panier100 years of national forest inventories - editorial / Matti Maltamo in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : 100 years of national forest inventories - editorial Type de document : Article/Communication Auteurs : Matti Maltamo, Auteur Année de publication : 2021 Article en page(s) : n° 10643 Note générale : bibliographie Langues : Anglais (eng) Résumé : (auteur) Editorial : National Forest Inventories (NFI) are reaching the 100 years time span. Starting from Norway in 1919 (Breidenbach et al. 2021) the establishment of the NFI followed in other counties, including Finland in 1921. Now, hundred years later, it is time to look back, the current state and the future, and celebrate. The background for the NFI was in many cases the threat of overexploitation and lack of information on the availability of timber for future harvest. During the decades many other metrics, such as forest health, biological diversity, and nowadays most noteworthy forests’ ability to absorb and store carbon, have influenced on the NFI from planning of the measurements to the calculation of the results. These changes have not only concerned the topics of the forest policy but also development in sampling frames, plot shapes and more technical aspects such as the positioning of field plots and the emergence of the role of remote sensing information, just to mention a few. It is also clear that the role of NFI will remain and even increase in the future when improved forest resource information is more and more useful for planning policies aimed at mitigating the climate change. Numéro de notice : A2021-734 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.14214/sf.10643 Date de publication en ligne : 29/09/2021 En ligne : https://doi.org/10.14214/sf.10643 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98690
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10643[article]Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds / Alwin A. Hardenbol in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds Type de document : Article/Communication Auteurs : Alwin A. Hardenbol, Auteur ; Anton Kuzmin, Auteur ; Lauri Korhonen, Auteur ; Pasi Korpelainen, Auteur ; Timo Kumpula, Auteur ; Matti Maltamo, Auteur ; Jari Kouki, Auteur Année de publication : 2021 Article en page(s) : n° 10515 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse discriminante
[Termes IGN] Betula (genre)
[Termes IGN] détection d'arbres
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] orthoimage couleur
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Populus tremula
[Termes IGN] semis de points
[Termes IGN] variation saisonnièreRésumé : (auteur) Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen (Populus tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests (Pinus sylvestris L., Picea abies [L.] Karst., Betula spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (May–September), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably. Numéro de notice : A2021-735 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10515 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.14214/sf.10515 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98691
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10515[article]Large-area inventory of species composition using airborne laser scanning and hyperspectral data / Hans Ole Ørka in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Large-area inventory of species composition using airborne laser scanning and hyperspectral data Type de document : Article/Communication Auteurs : Hans Ole Ørka, Auteur ; Endre H. Hansen, Auteur ; Michele Dalponte, Auteur ; Terje Gobakken, Auteur ; Erik Naesset, Auteur Année de publication : 2021 Article en page(s) : n° 10244 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] composition d'un peuplement forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Norvège
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] régression
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m2 collected over 350 km2 of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index. Numéro de notice : A2021-736 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10244 En ligne : https://doi.org/10.14214/sf.10244 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98695
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10244[article]