Journal of Spatial Information Science, JoSIS / Duckham, Matt . n° 16Paru le : 01/02/2018 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA grounding-based ontology of data quality measures / Franz-Benjamin Mocnik in Journal of Spatial Information Science, JoSIS, n° 16 ([01/02/2018])
[article]
Titre : A grounding-based ontology of data quality measures Type de document : Article/Communication Auteurs : Franz-Benjamin Mocnik, Auteur ; Amin Mobasheri, Auteur ; Luisa Griesbaum, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 1 - 25 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] mesure de la qualité
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des donnéesRésumé : (auteur) Data quality and fitness for purpose can be assessed by data quality measures. Existing ontologies of data quality dimensions reflect, among others, which aspects of data quality are assessed and the mechanisms that lead to poor data quality. An understanding of which source of information is used to judge about data quality and fitness for purpose is, however, lacking. This article introduces an ontology of data quality measures by their grounding, that is, the source of information to which the data is compared to in order to assess their quality. The ontology is exemplified with several examples of volunteered geographic information (VGI), while also applying to other geographical data and data in general. An evaluation of the ontology in the context of data quality measures for OpenStreetMap (OSM) data, a well-known example of VGI, provides insights about which types of quality measures for OSM data have and which have not yet been considered in literature. Numéro de notice : A2018-683 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.5311/JOSIS.2018.16.36 En ligne : https://josis.org/index.php/josis/article/view/86 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98693
in Journal of Spatial Information Science, JoSIS > n° 16 [01/02/2018] . - pp 1 - 25[article]Using mobility data as proxy for measuring urban vitality / Patrizia Sulis in Journal of Spatial Information Science, JoSIS, n° 16 ([01/02/2018])
[article]
Titre : Using mobility data as proxy for measuring urban vitality Type de document : Article/Communication Auteurs : Patrizia Sulis, Auteur ; Ed Manley, Auteur ; Chen Zhong, Auteur ; Michael Batty, Auteur Année de publication : 2018 Article en page(s) : pp 137 - 162 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] données localisées
[Termes IGN] données massives
[Termes IGN] dynamique spatiale
[Termes IGN] mobilité humaine
[Termes IGN] villeRésumé : (auteur) In this paper, we propose a computational approach to Jane Jacobs' concept of diversity and vitality, analyzing new forms of spatial data to obtain quantitative measurements of urban qualities frequently employed to evaluate places. We use smart card data collected from public transport to calculate a diversity value for each research unit. Diversity is composed of three dynamic attributes: intensity, variability, and consistency, each measuring different temporal variations of mobility flows. We then apply a regression model to establish the relationship between diversity and vitality, using Twitter data as a proxy for human activity in urban space. Final results (also validated using data sourced from OpenStreetMap) unveil which are the most vibrant areas in London. Numéro de notice : A2018-684 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.5311/JOSIS.2018.16.38 En ligne : https://josis.org/index.php/josis/article/view/92 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98694
in Journal of Spatial Information Science, JoSIS > n° 16 [01/02/2018] . - pp 137 - 162[article]