Paru le : 01/11/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2021111 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierA comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area / Myung-Jin Jun in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : A comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area Type de document : Article/Communication Auteurs : Myung-Jin Jun, Auteur Année de publication : 2021 Article en page(s) : pp 2149 - 2167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] arbre de décision
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Extreme Gradient Machine
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] Séoul
[Termes IGN] zone urbaineRésumé : (auteur) This study compares the performance of gradient boosting decision tree (GBDT), artificial neural networks (ANNs), and random forests (RF) methods in LUC modeling in the Seoul metropolitan area. The results of this study showed that GBDT and RF have higher predictive power than ANN, indicating that tree-based ensemble methods are an effective technique for LUC prediction. Along with the outstanding predictive performance, the DT-based ensemble models provide insights for understanding which factors drive LUCs in complex urban dynamics with the relative importance and nonlinear marginal effects of predictor variables. The GBDT results indicate that distance to the existing residential site has the highest contribution to urban land use conversion (30.4% of the relative importance), while other significant predictor variables were proximity to industrial and public sites (combined 32.3% of relative importance). New residential development is likely to be adjacent to existing residential sites, but nonresidential development occurs at a distance (about 600 m) from such sites. The distance to the central business district (CBD) had increasing marginal effects on residential land use conversion, while no significant pattern was found for nonresidential land use conversion, indicating that Seoul has experienced more population suburbanization than employment decentralization. Numéro de notice : A2021-756 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1887490 Date de publication en ligne : 01/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1887490 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98771
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2149 - 2167[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible A topic model based framework for identifying the distribution of demand for relief supplies using social media data / Ting Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : A topic model based framework for identifying the distribution of demand for relief supplies using social media data Type de document : Article/Communication Auteurs : Ting Zhang, Auteur ; Shi Shen, Auteur ; Changxiu Cheng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2216 - 2237 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] allocation de Dirichlet latente
[Termes IGN] cartographie thématique
[Termes IGN] catastrophe naturelle
[Termes IGN] cyclone
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Pacifique ouest
[Termes IGN] Philippines
[Termes IGN] répertoire toponymique
[Termes IGN] secours d'urgenceRésumé : (auteur) Natural disasters have caused substantial economic losses and numerous casualties. The demand analysis of relief supplies is the premise and basis for efficient relief operations after disasters. With the widespread use of social media, it has become a vital channel for people to report their demand for relief supplies and provides a way to obtain information on disaster areas. Therefore, we present a topic model-based framework and establish a demand dictionary and a gazetteer that aims to identify the spatial distribution of the demand for relief supplies by using social media data. Taking the 2013 Typhoon Haiyan (also called Yolanda) as a case study, we identify the potential topics of tweets with the biterm topic model, screen the tweets related to demands, and obtain the demand and location information from tweets to study the distribution of the relief supplies needs. The results show that, based on the demand dictionary, a gazetteer and the biterm topic model, the effective demand for relief supplies can be extracted from tweets. The proposed framework is feasible for the identification of accurate demand information and its distribution. Further, this framework can be applied to other types of disaster responses and can facilitate relief operations. Numéro de notice : A2021-757 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1869746 Date de publication en ligne : 07/01/2021 En ligne : https://doi.org/10.1080/13658816.2020.1869746 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98772
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2216 - 2237[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible Multiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing / Zhi Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : Multiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing Type de document : Article/Communication Auteurs : Zhi Zhang, Auteur ; Jing Li, Auteur ; Fung, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2262 - 2286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] coût
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] marché foncier
[Termes IGN] Pékin (Chine)
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) Geographically and temporally weighted regression (GTWR) has been demonstrated as an effective tool for exploring spatiotemporal data under spatial and temporal heterogeneity. Exploiting the advantages of the two most popular GTWR methods, we propose an alternative GTWR with a good balance between complexity and interpretability via a unilateral temporal weighting scheme called unilateral GTWR (UGTWR). When compared to the other two popular GTWR methods, the simulation experiment shows that UGTWR has comparable estimation accuracy and model fit, but it is more efficient. Furthermore, we propose its multiscale extension, coined multiscale UGTWR (MUGTWR), to characterize the spatiotemporal dynamic regression relationships at multiple scales. The proposed MUGTWR was applied to the analysis of house prices in the period of 2014–2018 in Beijing as a case study. Our analysis reveals that MUGTWR can effectively capture different levels of spatiotemporal heterogeneity in selected factors affecting house prices at different scales. Therefore, this study is useful for the formulation of housing policy in which the spatiotemporal dynamics of house prices with respect to specific factors can be considered. Numéro de notice : A2021-758 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1912348 Date de publication en ligne : 12/05/2021 En ligne : https://doi.org/10.1080/13658816.2021.1912348 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98773
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2262 - 2286[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible Urban land-use analysis using proximate sensing imagery: a survey / Zhinan Qiao in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : Urban land-use analysis using proximate sensing imagery: a survey Type de document : Article/Communication Auteurs : Zhinan Qiao, Auteur ; Xiaohui Yuan, Auteur Année de publication : 2021 Article en page(s) : pp 2129 - 2148 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] image Streetview
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) Urban regions are complicated functional systems that are closely associated with and reshaped by human activities. The propagation of online geographic information-sharing platforms and mobile devices equipped with the Global Positioning System (GPS) greatly proliferates proximate sensing images taken near or on the ground at a close distance to urban targets. Studies leveraging proximate sensing images have demonstrated great potential to address the need for local data in the urban land-use analysis. This paper reviews and summarizes the state-of-the-art methods and publicly available data sets from proximate sensing to support land-use analysis. We identify several research problems in the perspective of examples to support the training of models and means of integrating diverse data sets. Our discussions highlight the challenges, strategies, and opportunities faced by the existing methods using proximate sensing images in urban land-use studies. Numéro de notice : A2021-759 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1919682 Date de publication en ligne : 03/05/2021 En ligne : https://doi.org/10.1080/13658816.2021.1919682 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98788
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2129 - 2148[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible A quantitative comparison of regionalization methods / Orhun Aydun in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : A quantitative comparison of regionalization methods Type de document : Article/Communication Auteurs : Orhun Aydun, Auteur ; Mark V. Janikas, Auteur ; Renato Martins Assuncao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2287 - 2315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] données localisées
[Termes IGN] écorégion
[Termes IGN] exploration de données
[Termes IGN] partition d'image
[Termes IGN] partitionnement
[Termes IGN] segmentation en régionsRésumé : (auteur) Regionalization is the task of partitioning a set of contiguous areas into spatial clusters or regions. The theoretical and empirical literature focusing on regionalization is extensive, yet few quantitative comparisons have been conducted. We present a simulation study and explore the quality of frequently used and state-of-the-art regionalization algorithms, namely AZP, AZP-SA, AZPTabu, ARISEL, REDCAP, and SKATER, where the number of regions is an exogenous variable. The simulated benchmark data set consists of model realizations that represent various complexities in spatial data. Model families are defined with respect to regions’ shapes, value-mixing between regions, and the number of underlying spatial clusters. We evaluate the performance of different regionalization methods for realizations families using internal and external measures of regionalization quality. A large number of regionalization quality metrics expose a detailed profile of the analyzed methods’ strengths and weaknesses. We investigate the computational efficiency of every method as a function of the number of spatial units studied. We summarize results for different region families and discuss circumstances that make a certain method more desirable. We illustrate different regionalization algorithms’ implications on defining ecological regions for the conterminous US and compare them against expert-defined ecoregions. Numéro de notice : A2021-760 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1905819 Date de publication en ligne : 05/04/2021 En ligne : https://doi.org/10.1080/13658816.2021.1905819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98789
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2287 - 2315[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible A spatial model of cognitive distance in cities / Ed Manley in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : A spatial model of cognitive distance in cities Type de document : Article/Communication Auteurs : Ed Manley, Auteur ; Gabriele Filomena, Auteur ; Panos Mavros, Auteur Année de publication : 2021 Article en page(s) : pp 2316 - 2338 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cognition
[Termes IGN] distance
[Termes IGN] espace euclidien
[Termes IGN] espace urbain
[Termes IGN] modélisation spatiale
[Termes IGN] morphologie urbaine
[Termes IGN] perception
[Termes IGN] positionnement statique
[Termes IGN] représentation mentale spatiale
[Termes IGN] système d'information urbainRésumé : (auteur) Spatial cognition is fundamental to the behaviour and activity of humans in urban space. Humans perceive their environments with systematic biases and errors, and act upon these perceptions, which in turn form urban patterns of activity. These perceptions are influenced by a multitude of factors, many of them relating to the static urban form. Yet much of geographic analysis ignores the influence of urban form, instead referring most commonly to the Euclidean arrangement of space. In this paper, we propose a novel spatial modelling framework for estimating cognitive distance in urban space. This framework is constructed from a wealth of research describing the effect of environmental factors on distance estimation, and produces a quantitative estimate of the effect based on standard GIS data. Unlike other cost measures, the cognitive distance estimate integrates systematically observed distortions and biases in spatial cognition. As a proof-of-concept, the framework is implemented for 26 cities worldwide using open data, producing a novel comparative measure of ‘cognitive accessibility’. The paper concludes with a discussion of the potential of this approach in analysing and modelling urban systems, and outlines areas for further research. Numéro de notice : A2021-761 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1887488 Date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1080/13658816.2021.1887488 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98790
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2316 - 2338[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible Spatially–encouraged spectral clustering: a technique for blending map typologies and regionalization / Levi John Wolf in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : Spatially–encouraged spectral clustering: a technique for blending map typologies and regionalization Type de document : Article/Communication Auteurs : Levi John Wolf, Auteur Année de publication : 2021 Article en page(s) : pp 2356 - 2373 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] exploration de données
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] optimisation spatiale
[Termes IGN] régionalisation (segmentation)Résumé : (auteur) Clustering is a central concern in geographic data science and reflects a large, active domain of research. In spatial clustering, it is often challenging to balance two kinds of ‘goodness of fit:’ clusters should have ‘feature’ homogeneity, in that they aim to represent one ‘type’ of observation, and also ‘geographic’ coherence, in that they aim to represent some detected geographical ‘place’. This divides ‘map typologization’ studies, common in geodemographics, from ‘regionalization’ studies, common in spatial optimization and statistics. Recent attempts to simultaneously typologize and regionalize data into clusters with both feature homogeneity and geographic coherence have faced conceptual and computational challenges. Fortunately, new work on spectral clustering can address both regionalization and typologization tasks within the same framework. This research develops a novel kernel combination method for use within spectral clustering that allows analysts to blend smoothly between feature homogeneity and geographic coherence. I explore the formal properties of two kernel combination methods and recommend multiplicative kernel combination with spectral clustering. Altogether, spatially encouraged spectral clustering is shown as a novel kernel combination clustering method that can address both regionalization and typologization tasks in order to reveal the geographies latent in spatially structured data. Numéro de notice : A2021-762 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1934475 Date de publication en ligne : 05/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1934475 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98795
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2356 - 2373[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible