Descripteur
Documents disponibles dans cette catégorie (13)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Towards efficient indoor/outdoor registration using planar polygons / Rahima Djahel in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Towards efficient indoor/outdoor registration using planar polygons Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Bruno Vallet , Auteur ; Pascal Monasse, Auteur Année de publication : 2021 Projets : BIOM / Vallet, Bruno Article en page(s) : pp 51 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] appariement de primitives
[Termes IGN] bati
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de points
[Termes IGN] géométrie euclidienne
[Termes IGN] polygone
[Termes IGN] scène intérieure
[Termes IGN] scène urbaine
[Termes IGN] superposition de donnéesRésumé : (auteur) The registration of indoor and outdoor scans with a precision reaching the level of geometric noise represents a major challenge for Indoor/Outdoor building modeling. The basic idea of the contribution presented in this paper consists in extracting planar polygons from indoor and outdoor LiDAR scans, and then matching them. In order to cope with the very small overlap between indoor and outdoor scans of the same building, we propose to start by extracting points lying in the buildings’ interior from the outdoor scans as points where the laser ray crosses detected façades. Since, within a building environment, most of the objects are bounded by a planar surface, we propose a new registration algorithm that matches planar polygons by clustering polygons according to their normal direction, then by their offset in the normal direction. We use this clustering to find possible polygon correspondences (hypotheses) and estimate the optimal transformation for each hypothesis. Finally, a quality criteria is computed for each hypothesis in order to select the best one. To demonstrate the accuracy of our algorithm, we tested it on real data with a static indoor acquisition and a dynamic (Mobile Laser Scanning) outdoor acquisition. Numéro de notice : A2021-490 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2021-51-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-2-2021-51-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97955
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 51 - 58[article]Method for extraction of airborne LiDAR point cloud buildings based on segmentation / Maohua Liu in Plos one, vol 15 n° 5 (May 2020)
[article]
Titre : Method for extraction of airborne LiDAR point cloud buildings based on segmentation Type de document : Article/Communication Auteurs : Maohua Liu, Auteur ; Yue Shao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 0232778 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bati
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de points
[Termes IGN] segmentationRésumé : (auteur) The LiDAR technology is a means of urban 3D modeling in recent years, and the extraction of buildings is a key step in urban 3D modeling. In view of the complexity of most airborne LiDAR building point cloud extraction algorithms that need to combine multiple feature parameters, this study proposes a building point cloud extraction method based on the combination of the Point Cloud Library (PCL) region growth segmentation and the histogram. The filtered LiDAR point cloud is segmented by using the PCL region growth method, and then the local normal vector and direction cosine are calculated for each cluster after segmentation. Finally, the histogram is generated to effectively separate the building point cloud from the non-building.Two sets of airborne LiDAR data in the south and west parts of Tokushima, Japan, are used to test the feasibility of the proposed method. The results are compared with those of the commercial software TerraSolid and the K-means algorithm. Results show that the proposed extraction algorithm has lower type I and II errors and better extraction effect than that of the TerraSolid and the K-means algorithm. Numéro de notice : A2020-832 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1371/journal.pone.0232778 Date de publication en ligne : 29/05/2020 En ligne : https://doi.org/10.1371/journal.pone.0232778 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97666
in Plos one > vol 15 n° 5 (May 2020) . - n° 0232778[article]Unsupervised extraction of urban features from airborne lidar data by using self-organizing maps / Alper Sen in Survey review, vol 52 n° 371 (March 2020)
[article]
Titre : Unsupervised extraction of urban features from airborne lidar data by using self-organizing maps Type de document : Article/Communication Auteurs : Alper Sen, Auteur ; Baris Suleymanoglu, Auteur ; Metin Soycan, Auteur Année de publication : 2020 Article en page(s) : pp 150 - 158 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de filtrage
[Termes IGN] carte de Kohonen
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal
[Termes IGN] données lidar
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de points
[Termes IGN] filtre adaptatif
[Termes IGN] khi carré
[Termes IGN] pondération
[Termes IGN] réseau neuronal artificiel
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) The extraction of artificial and natural features using light detection and ranging (Lidar) data is a fundamental task in many fields of research for environmental science. In this study, the possibility of using self-organising maps (SOM), which is an unsupervised artificial neural network classification method to extract the bare earth surface and features from airborne Lidar data, was investigated for two different urban areas. The effect of the enlargement of the study area was analysed using the proposed approach. The appropriate weights of SOM inputs, which are 3D coordinates and intensity, obtained from a Lidar point cloud were determined by using Pearson's chi-squared independence test. The weighted SOM feature extraction performance was better than that of the unweighted SOM. The filtering results of SOM to separate ground and non-ground data were also compared with those obtained by the adaptive TIN filtering algorithm. Most of the non-ground features could be removed by the weighted SOM. Numéro de notice : A2020-079 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2018.1532704 Date de publication en ligne : 12/10/2018 En ligne : https://doi.org/10.1080/00396265.2018.1532704 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94642
in Survey review > vol 52 n° 371 (March 2020) . - pp 150 - 158[article]Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference Type de document : Article/Communication Auteurs : Heidar Rastiveis, Auteur ; Alireza Shams, Auteur ; Wayne A. Sarasua, Auteur ; Jonathan Li, Auteur Année de publication : 2020 Article en page(s) : pp 149 - 166 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] autoroute
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] extraction de points
[Termes IGN] extraction du réseau routier
[Termes IGN] Inférence floue
[Termes IGN] lidar mobile
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] transformation de HoughRésumé : (Auteur) Mobile LiDAR systems (MLS) are rapid and accurate technologies for acquiring three-dimensional (3D) point clouds that can be used to generate 3D models of road environments. Because manual extraction of desirable features such as road traffic signs, trees, and pavement markings from these point clouds is tedious and time-consuming, automatic information extraction of these objects is desirable. This paper proposes a novel automatic method to extract pavement lane markings (LMs) using point attributes associated with the MLS point cloud based on fuzzy inference. The proposed method begins with dividing the MLS point cloud into a number of small sections (e.g. tiles) along the route. After initial filtering of non-ground points, each section is vertically aligned. Next, a number of candidate LM areas are detected using a Hough Transform (HT) algorithm and considering a buffer area around each line. The points inside each area are divided into “probable-LM” and “non-LM” clusters. After extracting geometric and radiometric descriptors for the “probable-LM” clusters and analyzing them in a fuzzy inference system, true-LM clusters are eventually detected. Finally, the extracted points are enhanced and transformed back to their original position. The efficiency of the method was tested on two different point cloud datasets along 15.6 km and 9.5 km roadway corridors. Comparing the LMs extracted using the algorithm with the manually extracted LMs, 88% of the LM lines were successfully extracted in both datasets. Numéro de notice : A2020-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.009 Date de publication en ligne : 20/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94558
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 149 - 166[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Semiautomatically register MMS LiDAR points and panoramic image sequence using road lamp and lane / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 11 (November 2019)
[article]
Titre : Semiautomatically register MMS LiDAR points and panoramic image sequence using road lamp and lane Type de document : Article/Communication Auteurs : Ningning Zhu, Auteur ; Yonghong Jia, Auteur ; Xia Huang, Auteur Année de publication : 2019 Article en page(s) : pp 829 - 840 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] éclairage public
[Termes IGN] extraction de points
[Termes IGN] image panoramique
[Termes IGN] mobilier urbain
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] transformation linéaire directeRésumé : (Auteur) We propose using the feature points of road lamp and lane to register mobile mapping system (MMS) LiDAR points and panoramic image sequence. Road lamp and lane are the common objects on roads; the spatial distributions are regular, and thus our registration method has wide applicability and high precision. First, the road lamp and lane were extracted from the LiDAR points by horizontal grid and reflectance intensity and then by optimizing the endpoints as the feature points of road lamp and lane. Second, the feature points were projected onto the panoramic image by initial parameters and then by extracting corresponding feature points near the projection location. Third, the direct linear transformation method was used to solve the registration model and eliminate mismatching feature points. In the experiments, we compare the accuracy of our registration method with other registration methods by a sequence of panoramic images. The results show that our registration method is effective; the registration accuracy of our method is less than 10 pixels and averaged 5.84 pixels in all 31 panoramic images (4000 × 8000 pixels), which is much less than that of the 56.24 pixels obtained by the original registration method. Numéro de notice : A2019-525 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.14358/PERS.85.11.829 Date de publication en ligne : 01/11/2019 En ligne : https://doi.org/10.14358/PERS.85.11.829 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94062
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 11 (November 2019) . - pp 829 - 840[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019111 RAB Revue Centre de documentation En réserve L003 Disponible Automatic extraction of accurate 3D tie points for trajectory adjustment of mobile laser scanners using aerial imagery / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)PermalinkPermalinkGéo-référencement précis d'acquisition photogrammétrique de « longues » scènes d'intérieur / Truong Giang Nguyen (2018)PermalinkDiscriminative-dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification / Zhenxin Zhang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)PermalinkRobust locally weighted regression techniques for ground surface points filtering in mobile laser scanning three dimensional point cloud data / Abdul Nurunnabi in IEEE Transactions on geoscience and remote sensing, vol 54 n° 4 (April 2016)PermalinkSemantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features / Martin Weinmann in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-3 (September 2014)PermalinkPermalinkSIFT (Scale Invariant Feature Transform) : Un outil pour la mise en correspondance d’images / Arnaud Le Bris (2008)Permalink