Remote sensing . vol 13 n° 22Paru le : 15/11/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSpatial variability of suspended sediments in San Francisco Bay, California / Niky C. Taylor in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : Spatial variability of suspended sediments in San Francisco Bay, California Type de document : Article/Communication Auteurs : Niky C. Taylor, Auteur ; Raphael M. Kudela, Auteur Année de publication : 2021 Article en page(s) : n° 4625 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] baie
[Termes IGN] échantillonnage
[Termes IGN] estuaire
[Termes IGN] image Sentinel-MSI
[Termes IGN] pas d'échantillonnage au sol
[Termes IGN] qualité des eaux
[Termes IGN] réflectance
[Termes IGN] San Francisco
[Termes IGN] sédiment
[Termes IGN] spectroradiométrie
[Termes IGN] surface de l'eau
[Termes IGN] surveillance du littoral
[Termes IGN] turbidité des eaux
[Termes IGN] variabilitéRésumé : (auteur) Understanding spatial variability of water quality in estuary systems is important for making monitoring decisions and designing sampling strategies. In San Francisco Bay, the largest estuary system on the west coast of North America, tracking the concentration of suspended materials in water is largely limited to point measurements with the assumption that each point is representative of its surrounding area. Strategies using remote sensing can expand monitoring efforts and provide a more complete view of spatial patterns and variability. In this study, we (1) quantify spatial variability in suspended particulate matter (SPM) concentrations at different spatial scales to contextualize current in-water point sampling and (2) demonstrate the potential of satellite and shipboard remote sensing to supplement current monitoring methods in San Francisco Bay. We collected radiometric data from the bow of a research vessel on three dates in 2019 corresponding to satellite overpasses by Sentinel-2, and used established algorithms to retrieve SPM concentrations. These more spatially comprehensive data identified features that are not picked up by current point sampling. This prompted us to examine how much variability exists at spatial scales between 20 m and 10 km in San Francisco Bay using 10 m resolution Sentinel-2 imagery. We found 23–80% variability in SPM at the 5 km scale (the scale at which point sampling occurs), demonstrating the risk in assuming limited point sampling is representative of a 5 km area. In addition, current monitoring takes place along a transect within the Bay’s main shipping channel, which we show underestimates the spatial variance of the full bay. Our results suggest that spatial structure and spatial variability in the Bay change seasonally based on freshwater inflow to the Bay, tidal state, and wind speed. We recommend monitoring programs take this into account when designing sampling strategies, and that end-users account for the inherent spatial uncertainty associated with the resolution at which data are collected. This analysis also highlights the applicability of remotely sensed data to augment traditional sampling strategies. In sum, this study presents ways to supplement water quality monitoring using remote sensing, and uses satellite imagery to make recommendations for future sampling strategies. Numéro de notice : A2021-839 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13224625 Date de publication en ligne : 17/11/2021 En ligne : https://doi.org/10.3390/rs13224625 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99022
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4625[article]A semantics-based approach for simplifying IFC building models to facilitate the use of BIM models in GIS / Junxiang Zhu in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : A semantics-based approach for simplifying IFC building models to facilitate the use of BIM models in GIS Type de document : Article/Communication Auteurs : Junxiang Zhu, Auteur ; Peng Wu, Auteur ; Chimay Anumba, Auteur Année de publication : 2021 Article en page(s) : n° 4727 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes IGN] ArcGIS online
[Termes IGN] CityGML
[Termes IGN] format Industry foudation classes IFC
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] modélisation du bâti
[Termes IGN] niveau de détail
[Termes IGN] sémantiqueRésumé : (auteur) Using solid building models, instead of the surface models in City Geography Markup Language (CityGML), can facilitate data integration between Building Information Modeling (BIM) and Geographic Information System (GIS). The use of solid models, however, introduces a problem of model simplification on the GIS side. The aim of this study is to solve this problem by developing a framework for generating simplified solid building models from BIM. In this framework, a set of Level of Details (LoDs) were first defined to suit solid building models—referred to as s-LoD, ranging from s-LoD1 to s-LoD4—and three unique problems in implementing s-LoDs were identified and solved by using a semantics-based approach, including identifying external objects for s-LoD2 and s-LoD3, distinguishing various slabs, and generating valid external walls for s-LoD2 and s-LoD3. The feasibility of the framework was validated by using BIM models, and the result shows that using semantics from BIM can make it easier to convert and simplify building models, which in turn makes BIM information more practical in GIS. Numéro de notice : A2021-859 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/rs13224727 Date de publication en ligne : 22/11/2021 En ligne : https://doi.org/10.3390/rs13224727 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99073
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4727[article]The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) Type de document : Article/Communication Auteurs : Muhammad Amir Siddique, Auteur ; Yu Wang, Auteur ; Ninghan Xu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] champ aléatoire de Markov
[Termes IGN] changement d'occupation du sol
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification et arbre de régression
[Termes IGN] coefficient de corrélation
[Termes IGN] écosystème urbain
[Termes IGN] flore urbaine
[Termes IGN] ilot thermique urbain
[Termes IGN] modèle de simulation
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] urbanisationRésumé : (auteur) The rapid increase in infrastructural development in populated areas has had numerous adverse impacts. The rise in land surface temperature (LST) and its associated damage to urban ecological systems result from urban development. Understanding the current and future LST phenomenon and its relationship to landscape composition and land use/cover (LUC) changes is critical to developing policies to mitigate the disastrous impacts of urban heat islands (UHIs) on urban ecosystems. Using remote sensing and GIS data, this study assessed the multi-scale relationship of LUCC and LST of the cosmopolitan exponentially growing area of Beijing, China. We investigated the impacts of LUC on LST in urban agglomeration for a time series (2004–2019) of Landsat data using Classification and Regression Trees (CART) and a single channel algorithm (SCA), respectively. We built a CA–Markov model to forecast future (2025 and 2050) LUCC and LST spatial patterns. Our results indicate that the cumulative changes in an urban area (UA) increased by about 908.15 km2 (5%), and 11% of vegetation area (VA) decreased from 2004 to 2019. The correlation coefficient of LUCC including vegetation, water bodies, and built-up areas with LST had values of r = −0.155 (p > 0.419), −0.809 (p = 0.000), and 0.526 (p = 0.003), respectively. The results surrounding future forecasts revealed an estimated 2309.55 km2 (14%) decrease in vegetation (urban and forest), while an expansion of 1194.78 km2 (8%) was predicted for a built-up area from 2019 to 2050. This decrease in vegetation cover and expansion of settlements would likely cause a rise of about ~5.74 °C to ~9.66 °C in temperature. These findings strongly support the hypothesis that LST is directly related to the vegetation index. In conclusion, the estimated overall increase of 7.5 °C in LST was predicted from 2019–2050, which is alarming for the urban community’s environmental health. The present results provide insight into sustainable environmental development through effective urban planning of Beijing and other urban hotspots. Numéro de notice : A2021-860 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13224697 Date de publication en ligne : 20/11/2021 En ligne : https://doi.org/10.3390/rs13224697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99074
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4697[article]Forest structural complexity tool: An open source, fully-automated tool for measuring forest point clouds / Sean Krisanski in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : Forest structural complexity tool: An open source, fully-automated tool for measuring forest point clouds Type de document : Article/Communication Auteurs : Sean Krisanski, Auteur ; Mohammad Sadegh Taskhiri, Auteur ; Susana Gonzalez Aracil, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4677 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] édition en libre accès
[Termes IGN] logiciel libre
[Termes IGN] modèle numérique de terrain
[Termes IGN] Python (langage de programmation)
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] squelettisation
[Termes IGN] structure-from-motion
[Termes IGN] télédétection par lidarRésumé : (auteur) Forest mensuration remains critical in managing our forests sustainably, however, capturing such measurements remains costly, time-consuming and provides minimal amounts of information such as diameter at breast height (DBH), location, and height. Plot scale remote sensing techniques show great promise in extracting detailed forest measurements rapidly and cheaply, however, they have been held back from large-scale implementation due to the complex and time-consuming workflows required to utilize them. This work is focused on describing and evaluating an approach to create a robust, sensor-agnostic and fully automated forest point cloud measurement tool called the Forest Structural Complexity Tool (FSCT). The performance of FSCT is evaluated using 49 forest plots of terrestrial laser scanned (TLS) point clouds and 7022 destructively sampled manual diameter measurements of the stems. FSCT was able to match 5141 of the reference diameter measurements fully automatically with mean, median and root mean squared errors (RMSE) of 0.032 m, 0.02 m, and 0.103 m respectively. A video demonstration is also provided to qualitatively demonstrate the diversity of point cloud datasets that the tool is capable of measuring. FSCT is provided as open source, with the goal of enabling plot scale remote sensing techniques to replace most structural forest mensuration in research and industry. Future work on this project will seek to make incremental improvements to this methodology to further improve the reliability and accuracy of this tool in most high-resolution forest point clouds. Numéro de notice : A2021-861 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13224677 Date de publication en ligne : 19/11/2021 En ligne : https://doi.org/10.3390/rs13224677 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99075
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4677[article]Crop rotation modeling for deep learning-based parcel classification from satellite time series / Félix Quinton in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : Crop rotation modeling for deep learning-based parcel classification from satellite time series Type de document : Article/Communication Auteurs : Félix Quinton , Auteur ; Loïc Landrieu , Auteur Année de publication : 2021 Projets : 3-projet - voir note / Article en page(s) : n° 4599 Note générale : bibliographie
This research was funded by the French Payment Agency ASP.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] carte agricole
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] image Sentinel-MSI
[Termes IGN] parcelle agricole
[Termes IGN] rotation de culture
[Termes IGN] série temporelleRésumé : (auteur) While annual crop rotations play a crucial role for agricultural optimization, they have been largely ignored for automated crop type mapping. In this paper, we take advantage of the increasing quantity of annotated satellite data to propose to model simultaneously the inter- and intra-annual agricultural dynamics of yearly parcel classification with a deep learning approach. Along with simple training adjustments, our model provides an improvement of over 6.3% mIoU over the current state-of-the-art of crop classification, and a reduction of over 21% of the error rate. Furthermore, we release the first large-scale multi-year agricultural dataset with over 300,000 annotated parcels. Numéro de notice : A2021-934 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13224599 Date de publication en ligne : 16/11/2021 En ligne : https://doi.org/10.3390/rs13224599 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99539
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4599[article]