Remote sensing . vol 13 n° 23Paru le : 01/12/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierWhat is the impact of tectonic plate movement on country size? A long-term forecast / Kamil Maciuk in Remote sensing, vol 13 n° 23 (December-1 2021)
[article]
Titre : What is the impact of tectonic plate movement on country size? A long-term forecast Type de document : Article/Communication Auteurs : Kamil Maciuk, Auteur ; Michal Apollo, Auteur ; Anita Kukulska-Kozieł, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4872 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] déformation de la croute terrestre
[Termes IGN] frontière
[Termes IGN] lithosphère
[Termes IGN] modèle de simulation
[Termes IGN] montée du niveau de la mer
[Termes IGN] pays
[Termes IGN] superficie
[Termes IGN] tectonique des plaques
[Termes IGN] World Geodetic System 1984Résumé : (auteur) The Earth’s surface is under permanent alteration with the area of some nations growing or shrinking due to natural or man-made processes, for example sea level change. Here, based on the NUVEL 1A model, we forecast (in 10, 25, and 50 years) the changes in area for countries that are located on the border of the major tectonic plates. In the analysis we identify countries that are projected to gain or lose land due to the tectonic plate movement only. Over the next 50 years, the global balance of area gains (0.4 km2) and losses (12.7 km2) is negative. Thus, due to the movements of lithospheric plates, the land surface of the Earth will decrease by 12 km2 in 50 years. Overall, the changes are not that spectacular, as in the case of changes in sea/water levels, but in some smaller countries, projected losses exceed a few thousand square metres a year, e.g., in Nepal the losses exceed 10,000 m2 year−1. Methodologically, this paper finds itself between metric analysis and essay, trying to provoke useful academic discussion and incite educators’ interests to illustrate to students the tectonic movement and its force. Limitations of the used model have been discussed in the methodology section. Numéro de notice : A2021-877 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs13234872 Date de publication en ligne : 30/11/2021 En ligne : https://doi.org/10.3390/rs13234872 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99144
in Remote sensing > vol 13 n° 23 (December-1 2021) . - n° 4872[article]Lithological mapping based on fully convolutional network and multi-source geological data / Ziye Wang in Remote sensing, vol 13 n° 23 (December-1 2021)
[article]
Titre : Lithological mapping based on fully convolutional network and multi-source geological data Type de document : Article/Communication Auteurs : Ziye Wang, Auteur ; Renguang Zuo, Auteur ; Hao Liu, Auteur Année de publication : 2021 Article en page(s) : n° 4860 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] carte géologique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données géologiques
[Termes IGN] fusion de données multisource
[Termes IGN] Himalaya
[Termes IGN] lithologie
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Deep learning algorithms have found numerous applications in the field of geological mapping to assist in mineral exploration and benefit from capabilities such as high-dimensional feature learning and processing through multi-layer networks. However, there are two challenges associated with identifying geological features using deep learning methods. On the one hand, a single type of data resource cannot diagnose the characteristics of all geological units; on the other hand, deep learning models are commonly designed to output a certain class for the whole input rather than segmenting it into several parts, which is necessary for geological mapping tasks. To address such concerns, a framework that comprises a multi-source data fusion technology and a fully convolutional network (FCN) model is proposed in this study, aiming to improve the classification accuracy for geological mapping. Furthermore, multi-source data fusion technology is first applied to integrate geochemical, geophysical, and remote sensing data for comprehensive analysis. A semantic segmentation-based FCN model is then constructed to determine the lithological units per pixel by exploring the relationships among multi-source data. The FCN is trained end-to-end and performs dense pixel-wise prediction with an arbitrary input size, which is ideal for targeting geological features such as lithological units. The framework is finally proven by a comparative study in discriminating seven lithological units in the Cuonadong dome, Tibet, China. A total classification accuracy of 0.96 and a high mean intersection over union value of 0.9 were achieved, indicating that the proposed model would be an innovative alternative to traditional machine learning algorithms for geological feature mapping. Numéro de notice : A2021-878 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13234860 Date de publication en ligne : 30/11/2021 En ligne : https://doi.org/10.3390/rs13234860 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99146
in Remote sensing > vol 13 n° 23 (December-1 2021) . - n° 4860[article]Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data / Nikos Georgopoulos in Remote sensing, vol 13 n° 23 (December-1 2021)
[article]
Titre : Estimation of individual tree stem biomass in an uneven-aged structured coniferous forest using multispectral LiDAR data Type de document : Article/Communication Auteurs : Nikos Georgopoulos, Auteur ; Ioannis Z. Gitas, Auteur ; Alexandra Stefanidou, Auteur ; Lauri Korhonen, Auteur ; Dimitris G. Stavrakoudis, Auteur Année de publication : 2021 Article en page(s) : n° 4827 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Abies (genre)
[Termes IGN] biomasse aérienne
[Termes IGN] capteur multibande
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt inéquienne
[Termes IGN] Grèce
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] montagne
[Termes IGN] Pinophyta
[Termes IGN] régression
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (auteur) Stem biomass is a fundamental component of the global carbon cycle that is essential for forest productivity estimation. Over the last few decades, Light Detection and Ranging (LiDAR) has proven to be a useful tool for accurate carbon stock and biomass estimation in various biomes. The aim of this study was to investigate the potential of multispectral LiDAR data for the reliable estimation of single-tree total and barkless stem biomass (TSB and BSB) in an uneven-aged structured forest with complex topography. Destructive and non-destructive field measurements were collected for a total of 67 dominant and co-dominant Abies borisii-regis trees located in a mountainous area in Greece. Subsequently, two allometric equations were constructed to enrich the reference data with non-destructively sampled trees. Five different regression algorithms were tested for single-tree BSB and TSB estimation using height (height percentiles and bicentiles, max and average height) and intensity (skewness, standard deviation and average intensity) LiDAR-derived metrics: Generalized Linear Models (GLMs), Gaussian Process (GP), Random Forest (RF), Support Vector Regression (SVR) and Extreme Gradient Boosting (XGBoost). The results showcased that the RF algorithm provided the best overall predictive performance in both BSB (i.e., RMSE = 175.76 kg and R2 = 0.78) and TSB (i.e., RMSE = 211.16 kg and R2 = 0.65) cases. Our work demonstrates that BSB can be estimated with moderate to high accuracy using all the tested algorithms, contrary to the TSB, where only three algorithms (RF, SVR and GP) can adequately provide accurate TSB predictions due to bark irregularities along the stems. Overall, the multispectral LiDAR data provide accurate stem biomass estimates, the general applicability of which should be further tested in different biomes and ecosystems. Numéro de notice : A2021-953 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13234827 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.3390/rs13234827 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99955
in Remote sensing > vol 13 n° 23 (December-1 2021) . - n° 4827[article]