Cartography and Geographic Information Science / Cartography and geographic information society . vol 49 n° 1Paru le : 01/01/2022 |
[n° ou bulletin]
est un bulletin de Cartography and Geographic Information Science / Cartography and geographic information society (1999 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
032-2022011 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierAn approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web / Abdulkadir Memduhoglu in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
[article]
Titre : An approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web Type de document : Article/Communication Auteurs : Abdulkadir Memduhoglu, Auteur ; Melih Basaraner, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement géométrique
[Termes IGN] approche participative
[Termes IGN] bâtiment
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multiéchelles
[Termes IGN] Istanbul (Turquie)
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] SWRL
[Termes IGN] web des données
[Termes IGN] web sémantique
[Termes IGN] zone urbaineRésumé : (auteur) The advent of Web 2.0 has emerged abundant but often unstructured user-generated georeferenced data, such as those from Volunteered Geographic Information (VGI) initiatives. In many cases, these data can be considered as complementary to the authoritative geospatial data. With the increasing availability of multi-source geospatial data, the efforts for geospatial data integration have gained momentum, aiming at gathering maximum information to answer sophisticated questions that cannot be answered using a single data source. Although there are various approaches employed for this purpose with different degrees of success, semantic web methods and tools have not been tested sufficiently in this scope, particularly for multi-scale urban building data integration and enrichment. Attempting to fill this gap, in this study, multi-source and multi-scale urban building data were integrated with a geometric matching method based on the overlapping area, then a geospatial ontology was developed to define multi-scale representations and detailed cardinality relations of the building features. Finally, some features from the geospatial ontology were then linked to popular knowledge bases such as DBpedia and YAGO. For the exploitation on the web, query and visualization processes were demonstrated using sample questions. The semantic web enabled to model complex cardinality of relations between the features from three different building data sets using inferencing and Semantic Web Rule Language (SWRL). The study showed that integrating different geospatial data sets as a knowledge base can facilitate answering sophisticated questions from different users. Numéro de notice : A2022-016 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1952108 Date de publication en ligne : 24/08/2021 En ligne : https://doi.org/10.1080/15230406.2021.1952108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99147
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 1 - 17[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images / Xiao Li in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
[article]
Titre : Urban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images Type de document : Article/Communication Auteurs : Xiao Li, Auteur ; Huan Ning, Auteur ; Xiao Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 32 - 49 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] carrefour
[Termes IGN] cartographie urbaine
[Termes IGN] couche thématique
[Termes IGN] exploration d'images
[Termes IGN] feu de circulation
[Termes IGN] image Streetview
[Termes IGN] Mapillary
[Termes IGN] réseau routier
[Termes IGN] segmentation d'image
[Termes IGN] signalisation routièreRésumé : (auteur) Auditing and mapping traffic infrastructure is a crucial task in urban management. For example, signalized intersections play an essential role in transportation management; however, effectively identifying these intersections remains unsolved. Traditionally, signalized intersection data are manually collected through field audits or checking street view images (SVIs), which is time-consuming and labor-intensive. This study proposes an effective protocol to identify signalized intersections using road networks and SVIs. First, we propose a six-step geoprocessing model to generate an intersection feature layer from road networks. Second, we utilize up to three nearest SVIs to capture streetscapes at each intersection. Then, a deep learning-based image segmentation model is adopted to recognize traffic light-related pixels from each SVI. Last, we design a post-processing step to generate new features characterizing SVIs’ segmentation results at each intersection and build a decision tree model to determine the traffic control type. Results demonstrate that the proposed protocol can effectively identify signalized intersections with an overall accuracy of 97.05%. It also proves the effectiveness of SVIs for auditing urban infrastructures. This study can directly benefit transportation agencies by providing a ready-to-use smart audit and mapping solution for large-scale identification and mapping of signalized intersections. Numéro de notice : A2022-017 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/15230406.2021.1992299 Date de publication en ligne : 16/11/2021 En ligne : https://doi.org/10.1080/15230406.2021.1992299 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99148
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 32 - 49[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Identifying map users with eye movement data from map-based spatial tasks: user privacy concerns / Hua Liao in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
[article]
Titre : Identifying map users with eye movement data from map-based spatial tasks: user privacy concerns Type de document : Article/Communication Auteurs : Hua Liao, Auteur ; Weihua Dong, Auteur ; Zhicheng Zhan, Auteur Année de publication : 2022 Article en page(s) : pp 50 - 69 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] comportement
[Termes IGN] confidentialité
[Termes IGN] identité
[Termes IGN] lecture de carte
[Termes IGN] oculométrie
[Termes IGN] orientation
[Termes IGN] partage de données localisées
[Termes IGN] protection de la vie privée
[Termes IGN] utilisateur
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] CartologieRésumé : (auteur) Individuals with different characteristics exhibit different eye movement patterns in map reading and wayfinding tasks. In this study, we aim to explore whether and to what extent map users’ eye movements can be used to detect who created them. Specifically, we focus on the use of gaze data for inferring users’ identities when users are performing map-based spatial tasks. We collected 32 participants’ eye movement data as they utilized maps to complete a series of self-localization and spatial orientation tasks. We extracted five sets of eye movement features and trained a random forest classifier. We used a leave-one-task-out approach to cross-validate the classifier and achieved the best identification rate of 89%, with a 2.7% equal error rate. This result is among the best performances reported in eye movement user identification studies. We evaluated the feature importance and found that basic statistical features (e.g. pupil size, saccade latency and fixation dispersion) yielded better performance than other feature sets (e.g. spatial fixation densities, saccade directions and saccade encodings). The results open the potential to develop personalized and adaptive gaze-based map interactions but also raise concerns about user privacy protection in data sharing and gaze-based geoapplications. Numéro de notice : A2022-018 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1980435 Date de publication en ligne : 06/10/2021 En ligne : https://doi.org/10.1080/15230406.2021.1980435 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99161
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 50 - 69[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022011 RAB Revue Centre de documentation En réserve L003 Disponible