Descripteur
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
SAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : SAR image speckle reduction based on nonconvex hybrid total variation model Type de document : Article/Communication Auteurs : Yuli Sun, Auteur ; Lin Lei, Auteur ; Dongdong Guan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1231 - 1249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] artefact
[Termes IGN] chatoiement
[Termes IGN] détection de contours
[Termes IGN] distribution de Fisher
[Termes IGN] gradient
[Termes IGN] image radar moirée
[Termes IGN] régularisation d'image
[Termes IGN] variableRésumé : (auteur) Speckle noise inherent in synthetic aperture radar (SAR) images seriously affects the visual effect and brings great difficulties to the postprocessing of the SAR image. Due to the edge-preserving feature, total variation (TV) regularization-based techniques have been extensively utilized to reduce the speckle. However, the strong scatters in SAR image with radiometry several orders of magnitude larger than their surrounding regions limit the effectiveness of TV regularization. Meanwhile, the ℓ1 -norm first-order TV regularization sometimes causes staircase artifacts as it favors solutions that are piecewise constant, and it usually underestimates high-amplitude components of image gradient as the ℓ1 -norm uniformly penalizes the amplitude. To overcome these shortcomings, a new hybrid variation model, called Fisher–Tippett (FT) distribution- ℓp -norm first-and second-order hybrid TVs (HTpVs), is proposed to reduce the speckle after removing the strong scatters. Especially, the FT-HTpV inherits the advantages of the distribution based data fidelity term, the nonconvex regularization, and the higher order TV regularization. Therefore, it can effectively remove the speckle while preserving point scatters and edges and reducing staircase artifacts well. To efficiently solve the nonconvex minimization problem, an iterative framework with a nonmonotone-accelerated proximal gradient (nmAPG) method and a matrix-vector acceleration strategy are used. Extensive experiments on both the simulated and real SAR images demonstrate the effectiveness of the proposed method. Numéro de notice : A2021-114 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002561 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002561 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96924
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1231 - 1249[article]A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds / Loïc Landrieu in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
[article]
Titre : A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds Type de document : Article/Communication Auteurs : Loïc Landrieu , Auteur ; Hugo Raguet, Auteur ; Bruno Vallet , Auteur ; Clément Mallet , Auteur ; Martin Weinmann, Auteur Année de publication : 2017 Projets : 1-Pas de projet / Article en page(s) : pp 102 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut sémantique
[Termes IGN] données localisées 3D
[Termes IGN] interprétation automatique
[Termes IGN] lissage de données
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régularisation d'image
[Termes IGN] scène
[Termes IGN] semis de pointsRésumé : (Auteur) In this paper, we introduce a mathematical framework for obtaining spatially smooth semantic labelings of 3D point clouds from a pointwise classification. We argue that structured regularization offers a more versatile alternative to the standard graphical model approach. Indeed, our framework allows us to choose between a wide range of fidelity functions and regularizers, influencing the properties of the solution. In particular, we investigate the conditions under which the smoothed labeling remains probabilistic in nature, allowing us to measure the uncertainty associated with each label. Finally, we present efficient algorithms to solve the corresponding optimization problems.
To demonstrate the performance of our approach, we present classification results derived for standard benchmark datasets. We demonstrate that the structured regularization framework offers higher accuracy at a lighter computational cost in comparison to the classic graphical model approach.Numéro de notice : A2017-641 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.08.010 Date de publication en ligne : 11/09/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.08.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86998
in ISPRS Journal of photogrammetry and remote sensing > vol 132 (October 2017) . - pp 102 - 118[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017103 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt Documents numériques
en open access
A structured regularization framework ... - preprintAdobe Acrobat PDF Blind hyperspectral unmixing using total variation and ℓq sparse regularization / Jakob Sigurdsson in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
[article]
Titre : Blind hyperspectral unmixing using total variation and ℓq sparse regularization Type de document : Article/Communication Auteurs : Jakob Sigurdsson, Auteur ; Magnus Orn Ulfarsson, Auteur ; Johannes R. Sveinsson, Auteur Année de publication : 2016 Article en page(s) : pp 6371 - 6384 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] régularisation d'image
[Termes IGN] simulation d'image
[Termes IGN] variableRésumé : (Auteur) Blind hyperspectral unmixing involves jointly estimating endmembers and fractional abundances in hyperspectral images. An endmember is the spectral signature of a specific material in an image, while an abundance map specifies the amount of a material seen in each pixel in an image. In this paper, a new cyclic descent algorithm for blind hyperspectral unmixing using total variation (TV) and ℓq sparse regularization is proposed. Abundance maps are both spatially smooth and sparse. Their sparsity derives from the fact that each material in the image is not represented in all pixels. The abundance maps are assumed to be piecewise smooth since adjacent pixels in natural images tend to be composed of similar material. The TV regularizer is used to encourage piecewise smooth images, and the ℓq regularizer promotes sparsity. The dyadic expansion decouples the problem, making a cyclic descent procedure possible, where one abundance map is estimated, followed by the estimation of one endmember. A novel debiasing technique is also employed to reduce the bias of the algorithm. The algorithm is evaluated using both simulated and real hyperspectral images. Numéro de notice : A2016-914 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2582824 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2582824 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83136
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 11 (November 2016) . - pp 6371 - 6384[article]