ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) . vol 11 n° 1Paru le : 01/01/2022 |
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierHistorical Vltava River valley–various historical sources within web mapping environment / Jiří Krejčí in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
[article]
Titre : Historical Vltava River valley–various historical sources within web mapping environment Type de document : Article/Communication Auteurs : Jiří Krejčí, Auteur ; Jiří Cajthaml, Auteur Année de publication : 2022 Article en page(s) : n° 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] ArcGIS
[Termes IGN] carte ancienne
[Termes IGN] changement d'utilisation du sol
[Termes IGN] données anciennes
[Termes IGN] géoréférencement
[Termes IGN] modélisation 3D
[Termes IGN] point d'appui
[Termes IGN] République Tchèque
[Termes IGN] rivière
[Termes IGN] système d'information historique
[Termes IGN] vectorisation
[Termes IGN] web mappingRésumé : (auteur) The article deals with a comprehensive information system of the historic Vltava River valley. This system contains a number of resources, which are described. For old maps, which are the basis of the whole system, their georeferencing and potential problems in creating seamless mosaics are described. Other sources of data include old photographs, which are localized and stored in the system, along with the definition point of the place from which they were probably taken. The vectorization of data is described, not only for area features used for the analysis of land-use changes, but also for the vectorization of contours. These were vectorized from old maps and are substantial for the creation of historic DEM. Vectorized footprints of buildings and vectors of other functional areas subsequently serve as a basis for the procedural modeling of the virtual 3D landscape. The creation of such a complex and broad information system cannot be described in one article. The aim of this text is to draw attention to a possible approach to the presentation and visualization of the historic landscape, along with links to important documents. Numéro de notice : A2022-038 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11010035 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.3390/ijgi11010035 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99380
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 35[article]GIS-based survey over the public transport strategy: An instrument for economic and sustainable urban traffic planning / Gabriela Droj in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
[article]
Titre : GIS-based survey over the public transport strategy: An instrument for economic and sustainable urban traffic planning Type de document : Article/Communication Auteurs : Gabriela Droj, Auteur ; Laurentiu Droj, Auteur ; Ana-Cornelia Badea, Auteur Année de publication : 2022 Article en page(s) : n° 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse spatiale
[Termes IGN] modèle mathématique
[Termes IGN] planification urbaine
[Termes IGN] pollution atmosphérique
[Termes IGN] Roumanie
[Termes IGN] trafic routier
[Termes IGN] trafic urbain
[Termes IGN] transport publicRésumé : (auteur) Traffic has a direct impact on local and regional economies, on pollution levels and is also a major source of discomfort and frustration for the public who have to deal with congestion, accidents or detours due to road works or accidents. Congestion in urban areas is a common phenomenon nowadays, as the main arteries of cities become congested during peak hours or when there are additional constraints such as traffic accidents and road works that slow down traffic on road sections. When traffic increases, it is observed that some roads are predisposed to congestion, while others are not. It is evident that both congestion and urban traffic itself are influenced by several factors represented by complex geospatial data and the spatial relationships between them. In this paper were integrated mathematical models, real time traffic data with network analysis and simulation procedures in order to analyze the public transportation in Oradea and the impact on urban traffic. A mathematical model was also adapted to simulate the travel choices of the population of the city and of the surrounding villages. Based on the network analysis, traffic analysis and on the traveling simulation, the elements generating traffic congestion in the inner city can be easily determined. The results of the case study are emphasizing that diminishing the traffic and its effects can be obtained by improving either the public transport density or its accessibility. Numéro de notice : A2022-039 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11010016 Date de publication en ligne : 30/12/2021 En ligne : https://doi.org/10.3390/ijgi11010016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99382
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 16[article]Automatic identification of addresses: A systematic literature review / Paula Cruz in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
[article]
Titre : Automatic identification of addresses: A systematic literature review Type de document : Article/Communication Auteurs : Paula Cruz, Auteur ; Leonardo Vanneschi, Auteur ; Marco Painho, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'adresses
[Termes IGN] géocodage par adresse postale
[Termes IGN] Geoparsing
[Termes IGN] service fondé sur la positionRésumé : (auteur) Address matching continues to play a central role at various levels, through geocoding and data integration from different sources, with a view to promote activities such as urban planning, location-based services, and the construction of databases like those used in census operations. However, the task of address matching continues to face several challenges, such as non-standard or incomplete address records or addresses written in more complex languages. In order to better understand how current limitations can be overcome, this paper conducted a systematic literature review focused on automated approaches to address matching and their evolution across time. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, resulting in a final set of 41 papers published between 2002 and 2021, the great majority of which are after 2017, with Chinese authors leading the way. The main findings revealed a consistent move from more traditional approaches to deep learning methods based on semantics, encoder-decoder architectures, and attention mechanisms, as well as the very recent adoption of hybrid approaches making an increased use of spatial constraints and entities. The adoption of evolutionary-based approaches and privacy preserving methods stand as some of the research gaps to address in future studies. Numéro de notice : A2022-088 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11010011 Date de publication en ligne : 29/12/2021 En ligne : https://doi.org/10.3390/ijgi11010011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99497
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 11[article]Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation / Guiming Zhang in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
[article]
Titre : Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation Type de document : Article/Communication Auteurs : Guiming Zhang, Auteur Année de publication : 2022 Article en page(s) : n° 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] estimation par noyau
[Termes IGN] exploration de données géographiques
[Termes IGN] géovisualisation
[Termes IGN] processeur graphique
[Termes IGN] qualité des données
[Termes IGN] réseau social
[Termes IGN] tâche claireRésumé : (auteur) Volunteer-contributed geographic data (VGI) is an important source of geospatial big data that support research and applications. A major concern on VGI data quality is that the underlying observation processes are inherently biased. Detecting observation hot-spots thus helps better understand the bias. Enabled by the parallel kernel density estimation (KDE) computational tool that can run on multiple GPUs (graphics processing units), this study conducted point pattern analyses on tens of millions of iNaturalist observations to detect and visualize volunteers’ observation hot-spots across spatial scales. It was achieved by setting varying KDE bandwidths in accordance with the spatial scales at which hot-spots are to be detected. The succession of estimated density surfaces were then rendered at a sequence of map scales for visual detection of hot-spots. This study offers an effective geovisualization scheme for hierarchically detecting hot-spots in massive VGI datasets, which is useful for understanding the pattern-shaping drivers that operate at multiple spatial scales. This research exemplifies a computational tool that is supported by high-performance computing and capable of efficiently detecting and visualizing multi-scale hot-spots in geospatial big data and contributes to expanding the toolbox for geospatial big data analytics. Numéro de notice : A2022-091 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11010055 Date de publication en ligne : 12/01/2022 En ligne : https://doi.org/10.3390/ijgi11010055 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99507
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 55[article]