Remote sensing . vol 14 n° 1Paru le : 01/01/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods / Pengxiang Zhao in Remote sensing, vol 14 n° 1 (January-1 2022)
[article]
Titre : A GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods Type de document : Article/Communication Auteurs : Pengxiang Zhao, Auteur ; Zohreh Masoumi, Auteur ; Maryam Kalantari, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] effondrement de terrain
[Termes IGN] Iran
[Termes IGN] modèle numérique de surface
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] risque naturel
[Termes IGN] système d'information géographiqueRésumé : (auteur) Landslides often cause significant casualties and economic losses, and therefore landslide susceptibility mapping (LSM) has become increasingly urgent and important. The potential of deep learning (DL) like convolutional neural networks (CNN) based on landslide causative factors has not been fully explored yet. The main target of this study is the investigation of a GIS-based LSM in Zanjan, Iran and to explore the most important causative factor of landslides in the case study area. Different machine learning (ML) methods have been employed and compared to select the best results in the case study area. The CNN is compared with four ML algorithms, including random forest (RF), artificial neural network (ANN), support vector machine (SVM), and logistic regression (LR). To do so, sixteen landslide causative factors have been extracted and their related spatial layers have been prepared. Then, the algorithms were trained with related landslide and non-landslide points. The results illustrate that the five ML algorithms performed suitably (precision = 82.43–85.6%, AUC = 0.934–0.967). The RF algorithm achieves the best result, while the CNN, SVM, the ANN, and the LR have the best results after RF, respectively, in this case study. Moreover, variable importance analysis results indicate that slope and topographic curvature contribute more to the prediction. The results would be beneficial to planning strategies for landslide risk management. Numéro de notice : A2022-056 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/rs14010211 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.3390/rs14010211 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99459
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 211[article]Classification of mediterranean shrub species from UAV point clouds / Juan Pedro Carbonell-Rivera in Remote sensing, vol 14 n° 1 (January-1 2022)
[article]
Titre : Classification of mediterranean shrub species from UAV point clouds Type de document : Article/Communication Auteurs : Juan Pedro Carbonell-Rivera, Auteur ; Jesus Torralba, Auteur ; Javier Estornell, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 199 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] arbuste
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] Espagne
[Termes IGN] Extreme Gradient Machine
[Termes IGN] forêt méditerranéenne
[Termes IGN] image captée par drone
[Termes IGN] incendie de forêt
[Termes IGN] indice de végétation
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de terrain
[Termes IGN] parc naturel
[Termes IGN] photogrammétrie aérienne
[Termes IGN] semis de pointsRésumé : (auteur) Modelling fire behaviour in forest fires is based on meteorological, topographical, and vegetation data, including species’ type. To accurately parameterise these models, an inventory of the area of analysis with the maximum spatial and temporal resolution is required. This study investigated the use of UAV-based digital aerial photogrammetry (UAV-DAP) point clouds to classify tree and shrub species in Mediterranean forests, and this information is key for the correct generation of wildfire models. In July 2020, two test sites located in the Natural Park of Sierra Calderona (eastern Spain) were analysed, registering 1036 vegetation individuals as reference data, corresponding to 11 shrub and one tree species. Meanwhile, photogrammetric flights were carried out over the test sites, using a UAV DJI Inspire 2 equipped with a Micasense RedEdge multispectral camera. Geometrical, spectral, and neighbour-based features were obtained from the resulting point cloud generated. Using these features, points belonging to tree and shrub species were classified using several machine learning methods, i.e., Decision Trees, Extra Trees, Gradient Boosting, Random Forest, and MultiLayer Perceptron. The best results were obtained using Gradient Boosting, with a mean cross-validation accuracy of 81.7% and 91.5% for test sites 1 and 2, respectively. Once the best classifier was selected, classified points were clustered based on their geometry and tested with evaluation data, and overall accuracies of 81.9% and 96.4% were obtained for test sites 1 and 2, respectively. Results showed that the use of UAV-DAP allows the classification of Mediterranean tree and shrub species. This technique opens a wide range of possibilities, including the identification of species as a first step for further extraction of structure and fuel variables as input for wildfire behaviour models. Numéro de notice : A2022-057 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14010199 En ligne : https://doi.org/10.3390/rs14010199 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99462
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 199[article]Detection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks / Stefan Reder in Remote sensing, vol 14 n° 1 (January-1 2022)
[article]
Titre : Detection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks Type de document : Article/Communication Auteurs : Stefan Reder, Auteur ; J.P. Mund, Auteur ; Nicole Albert, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] branche (arbre)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image captée par drone
[Termes IGN] orthophotoplan numérique
[Termes IGN] segmentation sémantique
[Termes IGN] tempête
[Termes IGN] troncRésumé : (auteur) The increasing number of severe storm events is threatening European forests. Besides the primary damages directly caused by storms, there are secondary damages such as bark beetle outbreaks and tertiary damages due to negative effects on the market. These subsequent damages can be minimized if a detailed overview of the affected area and the amount of damaged wood can be obtained quickly and included in the planning of clearance measures. The present work utilizes UAV-orthophotos and an adaptation of the U-Net architecture for the semantic segmentation and localization of windthrown stems. The network was pre-trained with generic datasets, randomly combining stems and background samples in a copy–paste augmentation, and afterwards trained with a specific dataset of a particular windthrow. The models pre-trained with generic datasets containing 10, 50 and 100 augmentations per annotated windthrown stems achieved F1-scores of 73.9% (S1Mod10), 74.3% (S1Mod50) and 75.6% (S1Mod100), outperforming the baseline model (F1-score 72.6%), which was not pre-trained. These results emphasize the applicability of the method to correctly identify windthrown trees and suggest the collection of training samples from other tree species and windthrow areas to improve the ability to generalize. Further enhancements of the network architecture are considered to improve the classification performance and to minimize the calculative costs. Numéro de notice : A2022-082 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14010075 En ligne : https://doi.org/10.3390/rs14010075 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99476
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 75[article]