Descripteur
Termes IGN > 1- Outils - instruments et méthodes > document > document géographique > document cartographique > carte > carte thématique > carte d'utilisation du sol
carte d'utilisation du sol |
Documents disponibles dans cette catégorie (18)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping / Luc Baudoux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
[article]
Titre : Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet , Auteur Année de publication : 2023 Projets : AI4GEO / Article en page(s) : pp 403 - 437 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] harmonisation des données
[Termes IGN] nomenclature
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Land-use/land-cover (LULC) maps describe the Earth’s surface with discrete classes at a specific spatial resolution. The chosen classes and resolution highly depend on peculiar uses, making it mandatory to develop methods to adapt these characteristics for a large range of applications. Recently, a convolutional neural network (CNN)-based method was introduced to take into account both spatial and geographical context to translate a LULC map into another one. However, this model only works for two maps: one source and one target. Inspired by natural language translation using multiple-language models, this article explores how to translate one LULC map into several targets with distinct nomenclatures and spatial resolutions. We first propose a new data set based on six open access LULC maps to train our CNN-based encoder-decoder framework. We then apply such a framework to convert each of these six maps into each of the others using our Multi-Landcover Translation network (MLCT-Net). Extensive experiments are conducted at a country scale (namely France). The results reveal that our MLCT-Net outperforms its semantic counterparts and gives on par results with mono-LULC models when evaluated on areas similar to those used for training. Furthermore, it outperforms the mono-LULC models when applied to totally new landscapes. Numéro de notice : A2023-075 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2120996 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2120996 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101797
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 403 - 437[article]Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping / Jwan Al-Doski in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 8 (August 2022)
[article]
Titre : Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping Type de document : Article/Communication Auteurs : Jwan Al-Doski, Auteur ; Faez M. Hassan, Auteur ; Hussein Abdelwahab Mossa, Auteur ; Aus A. Najim, Auteur Année de publication : 2022 Article en page(s) : pp 507 - 516 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données auxiliaires
[Termes IGN] image Landsat-8
[Termes IGN] Malaisie
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] ombre
[Termes IGN] précision de la classificationRésumé : (Auteur) Ancillary data are crucial in land use land cover (LULC) mapping process. This study goal is to investigate if adding Normalized Difference Vegetation Index (NDVI) and digital elevation model (DEM) data as ancillary data to the Landsat-8 spectral imagery (acquired on 14 April 2016) in the support vector machine (SVM ) classification process improves LULC mapping accuracy in GuaMusang, Malaysia. ENVI software was used to preprocess a single Landsat-8 image, convert it to reflectance, and calculate NDVI. ASTER-GDEM data were used to generate the DEM. The logical channel method was used to combine NDVI and DEM with Landsat-8 bands and limit the impact of shadows during SVM classification. The SVM accuracy was tested and evaluated on ancillary data and Landsat-8 spectral-based collection. The results revealed that the user's accuracy and producer's accuracy improved by 15.1% and 2.1%, for primary forest and by 17.93% and 28.86% for secondary forest, respectively. The classification reliability of the majority of LULC categories has increased significantly. Compared to SVM spectral-based set, the overall accuracy and kappa coefficient of the SVM ancillary-based set improved by 8.77% and 0.12, respectively. In conclusion, this article demonstrated that integrating DEM and NDVI data improves Landsat-8 image classification precision. Numéro de notice : A2022-805 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00082R2 Date de publication en ligne : 01/08/2022 En ligne : https://doi.org/10.14358/PERS.21-00082R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102132
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 8 (August 2022) . - pp 507 - 516[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022081 SL Revue Centre de documentation Revues en salle Disponible Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series / Maximilian Lange in Remote sensing of environment, vol 277 (August 2022)
[article]
Titre : Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series Type de document : Article/Communication Auteurs : Maximilian Lange, Auteur ; Hannes Feilhauer, Auteur ; Ingolf Kühn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112888 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Allemagne
[Termes IGN] apprentissage automatique
[Termes IGN] bande spectrale
[Termes IGN] carte d'utilisation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] échantillonnage de données
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] prairie
[Termes IGN] série temporelleRésumé : (auteur) Information on grassland land-use intensity (LUI) is crucial for understanding trends and dynamics in biodiversity, ecosystem functioning, earth system science and environmental monitoring. LUI is a major driver for numerous environmental processes and indicators, such as primary production, nitrogen deposition and resilience to climate extremes. However, large extent, high resolution data on grassland LUI is rare. New satellite generations, such as Copernicus Sentinel-2, enable a spatially comprehensive detection of the mainly subtle changes induced by land-use intensification by their fine spatial and temporal resolution. We developed a methodology quantifying key parameters of grassland LUI such as grazing intensity, mowing frequency and fertiliser application across Germany using Convolutional Neural Networks (CNN) on Sentinel-2 satellite data with 20 m × 20 m spatial resolution. Subsequently, these land-use components were used to calculate a continuous LUI index. Predictions of LUI and its components were validated using comprehensive in situ grassland management data. A feature contribution analysis using Shapley values substantiates the applicability of the methodology by revealing a high relevance of springtime satellite observations and spectral bands related to vegetation health and structure. We achieved an overall classification accuracy of up to 66% for grazing intensity, 68% for mowing, 85% for fertilisation and an r2 of 0.82 for subsequently depicting LUI. We evaluated the methodology's robustness with a spatial 3-fold cross-validation by training and predicting on geographically distinctly separated regions. Spatial transferability was assessed by delineating the models' area of applicability. The presented methodology enables a high resolution, large extent mapping of land-use intensity of grasslands. Numéro de notice : A2022-468 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112888 Date de publication en ligne : 13/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112888 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100805
in Remote sensing of environment > vol 277 (August 2022) . - n° 112888[article]Monitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon / Le Bienfaiteur Sagang Takougoum (2022)
Titre : Monitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon Type de document : Thèse/HDR Auteurs : Le Bienfaiteur Sagang Takougoum, Auteur ; Bonaventure Sonké, Directeur de thèse ; Nicolas Barbier, Directeur de thèse Editeur : Yaoundé : Université de Yaoundé Année de publication : 2022 Importance : 166 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l'Université de Yaoundé 1, Spécialité Botanique-EcologieLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Cameroun
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte de la végétation
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] dynamique de la végétation
[Termes IGN] écotone
[Termes IGN] flore locale
[Termes IGN] forêt
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] incendie de forêt
[Termes IGN] modèle statistique
[Termes IGN] savane
[Termes IGN] surveillance forestièreIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Understanding the effects of global change (combining anthropic and climatic pressures) on biome distribution needs innovative approaches allowing to address the large spatial scales involved and the scarcity of available ground data. Characterizing vegetation dynamics at landscape to regional scale requires both a high level of spatial detail (resolution), generally obtained through precise field measurements, and a sufficient coverage of the land surface (extent) provided by satellite images. The difficulty usually lies between these two scales as both signal saturation from satellite data and ground sampling limitations contribute to inaccurate extrapolations. Airborne laser scanning (ALS) data has revolutionized the trade-off between spatial detail and landscape coverage as it gives accurate information of the vegetation’s structure over large areas which can be used to calibrate satellite data. Also recent satellite data of improved spectral and spatial resolutions (Sentinel 2) allow for detailed characterizations of compositional gradients in the vegetation, notably in terms of the abundance of broad functional/optical plant types. Another major obstacle comes from the lack of a temporal perspective on dynamics and disturbances. Growing satellite imagery archives over several decades (45 years; Landsat) and available computing facilities such as Google Earth Engine (GEE) provide new possibilities to track long term successional trajectories and detect significant disturbances (i.e. fire) at a fine spatial detail (30m) and relate them to the current structure and composition of the vegetation. With these game changing tools our objective was to track long-term dynamics of forest-savanna ecotone in the Guineo-Congolian transition area of the Central Region of Cameroon with induced changes in the vegetatio structure and composition within two contrasted scenarios of anthropogenic pressures: 1) the Nachtigal area which is targeted for the dam construction and subject to intense agricultural activities and 2) the Mpem et Djim National Park (MDNP) which has no management plan. The maximum likelihood classification of the Spot 6/7 image aided with the information from the canopy height derived from ALS data discriminated the vegetation types within the Nachtigal area with good accuracy (96.5%). Using field plots data in upscaling aboveground biomass (AGB) form field plots estimates to the satellite estimates with model-based approaches lead to a systematic overestimation in AGB density estimates and a root mean squared prediction error (RMSPE) of up to 65 Mg.ha−1 (90%), whereas calibration with ALS data (AGBALS) lead to low bias and a drop of ~30% in RMSPE (down to 43 Mg.ha−1, 58%) with little effect of the satellite sensor used. However, these results also confirm that, whatever the spectral indices used and attention paid to sensor quality and pre-processing, the signal is not sufficient to warrant accurate pixel wise predictions, because of large relative RMSPE, especially above (200–250 Mg.ha−1). The design-based approach, for which average AGB density values were attributed to mapped land cover classes, proved to be a simple and reliable alternative (for landscape to region level estimations), when trained with dense ALS samples. AGB and species diversity measured within 74 field inventory plots (distributed along a savanna to forest successional gradient) were higher for the vegetation located in the MDNP compared to their pairs in the Nachtigal area. The automated unsupervised long-term (45 years) land cover change monitoring from Landsat image archives based on GEE captured a consistent and regular pattern of forest progression into savanna at an average rate of 1% (ca. 6 km².year-1). No fire occurrence was captured for savanna that transited to forest within five years of monitoring. Distinct assemblages of spectral species are apparent in forest vegetation which is consistent with the age of transition. As forest gets older AGBALS recovers at a rate of 4.3 Mg.ha-1.year-1 in young forest stands ( Note de contenu : Chapter 1. Generalities
1.1 Introduction
1.2 Literature Review
Chapter 2. Material And Methods
2.1 Material
2.2 Methods
Chapter 3. Results And Discussion
3.1 Results
3.2 Discussion
Chapter 4. Conclusion And Perspectives
4.1 Conclusion
4.2 PerspectivesNuméro de notice : 26820 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Thèse étrangère Note de thèse : Thèse de doctorat : Botanique-Ecologie : Yaoundé : 2022 Organisme de stage : Institut de Recherche pour le Développement IRD nature-HAL : Thèse DOI : sans Date de publication en ligne : 13/04/2022 En ligne : https://hal.inrae.fr/tel-03528875/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100465 Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America / Bin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)
[article]
Titre : Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America Type de document : Article/Communication Auteurs : Bin Chen, Auteur ; Ying Tu, Auteur ; Yimeng Song, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 203 - 218 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme d'apprentissage
[Termes IGN] carte d'utilisation du sol
[Termes IGN] données massives
[Termes IGN] données multisources
[Termes IGN] Etats-Unis
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] métropole
[Termes IGN] OpenStreetMap
[Termes IGN] planification urbaine
[Termes IGN] zone urbaineRésumé : (auteur) Urban land-use maps outlining the distribution, pattern, and composition of various land use types are critically important for urban planning, environmental management, disaster control, health protection, and biodiversity conservation. Recent advances in remote sensing and social sensing data and methods have shown great potentials in mapping urban land use categories, but they are still constrained by mixed land uses, limited predictors, non-localized models, and often relatively low accuracies. To inform these issues, we proposed a robust and cost-effective framework for mapping urban land use categories using openly available multi-source geospatial “big data”. With street blocks generated from OpenStreetMap (OSM) data as the minimum classification unit, we integrated an expansive set of multi-scale spatially explicit information on land surface, vertical height, socio-economic attributes, social media, demography, and topography. We further proposed to apply the automatic ensemble learning that leverages a bunch of machine learning algorithms in deriving optimal urban land use classification maps. Results of block-level urban land use classification in five metropolitan areas of the United States found the overall accuracies of major-class (Level-I) and minor-class (Level-II) classification could be high as 91% and 86%, respectively. A multi-model comparison revealed that for urban land use classification with high-dimensional features, the multi-layer stacking ensemble models achieved better performance than base models such as random forest, extremely randomized trees, LightGBM, CatBoost, and neural networks. We found without very-high-resolution National Agriculture Imagery Program imagery, the classification results derived from Sentinel-1, Sentinel-2, and other open big data based features could achieve plausible overall accuracies of Level-I and Level-II classification at 88% and 81%, respectively. We also found that model transferability depended highly on the heterogeneity in characteristics of different regions. The methods and findings in this study systematically elucidate the role of data sources, classification methods, and feature transferability in block-level land use classifications, which have important implications for mapping multi-scale essential urban land use categories. Numéro de notice : A2021-564 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.06.010 Date de publication en ligne : 25/06/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.06.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98129
in ISPRS Journal of photogrammetry and remote sensing > vol 178 (August 2021) . - pp 203 - 218[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021081 SL Revue Centre de documentation Revues en salle Disponible 081-2021083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Decision-level and feature-level integration of remote sensing and geospatial big data for urban land use mapping / Jiadi Yin in Remote sensing, vol 13 n° 8 (April-2 2021)PermalinkAssessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([15/02/2021])PermalinkIdentifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis / Marta Sapena Moll in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)PermalinkMapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series / Misganu Debella-Gilo in Remote sensing, Vol 13 n° 2 (January-2 2021)PermalinkUse of automated change detection and VGI sources for identifying and validating urban land use change / Ana-Maria Olteanu-Raimond in Remote sensing, vol 12 n° 7 (April 2020)PermalinkPermalinkEstimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery / Jose Alan A. Castillo in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)PermalinkCartographie de la dynamique de terroirs villageois à l’aide d’un drone dans les aires protégées de la République démocratique du Congo / Jean Semeki Ngabinzeke in Bois et forêts des tropiques, n° 330 (4e trimestre 2016)PermalinkICC 1999, 19th International Cartographic Conference, Ottawa, Canada : proceedings, Volume 6. Environnement, géologie et risque ; Cartographie marine et navigation ; Cartographie planétaire ; Histoire et lignes de pensée / C. Peter Keller (1999)PermalinkProceedings of the International Symposium on Computer-assisted Cartography, Auto-Carto 2, 21 - 25 septembre 1975, Reston, Virginia, USA / Robert T. Aangeenbrug (1975)Permalink