European journal of remote sensing . vol 55 n° 1Paru le : 01/01/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSelf-attention and generative adversarial networks for algae monitoring / Nhut Hai Huynh in European journal of remote sensing, vol 55 n° 1 (2022)
[article]
Titre : Self-attention and generative adversarial networks for algae monitoring Type de document : Article/Communication Auteurs : Nhut Hai Huynh, Auteur ; Gordon Boër, Auteur ; Hauke Schramm, Auteur Année de publication : 2022 Article en page(s) : pp 10 - 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algue
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectrale
[Termes IGN] plancton
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Water is important for the natural environment and human health. Monitoring algae concentrations yield information on the water quality. Compared with in situ measurements of water quality parameters, which are often complex and expensive, remote sensing techniques, using hyperspectral data analysis, are fast and cost-effective. The objectives of this study are (1) to estimate the algae concentrations from hyperspectral data using deep learning techniques, (2) to investigate the applicability of attention mechanisms in the analysis of hyperspectral data, and (3) to augment the training data using generative adversarial networks (GANs). The results show that the accuracy of deep learning techniques is 7.6% higher than that of simpler artificial neural networks. Compared to noise injection and principal component analysis-based data augmentation, the use of a GAN-based data augmentation method significantly improves the accuracy of algae concentration estimates (>5%). In addition, models with added attention mechanisms yield an on average 3.13% higher accuracy than those without attention techniques. This result demonstrates the improvement of spectral features of artificial hyperspectral data based on the self-attention approach, revealing the potential of attention techniques in hyperspectral remote sensing. Numéro de notice : A2022-097 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2021.2010605 Date de publication en ligne : 02/01/2022 En ligne : https://doi.org/10.1080/22797254.2021.2010605 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99547
in European journal of remote sensing > vol 55 n° 1 (2022) . - pp 10 - 22[article]Improving LSMA for impervious surface estimation in an urban area / Jin Wang in European journal of remote sensing, vol 55 n° 1 (2022)
[article]
Titre : Improving LSMA for impervious surface estimation in an urban area Type de document : Article/Communication Auteurs : Jin Wang, Auteur ; Yaolong Zhao, Auteur ; Yingchun Fu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 37 - 51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification et arbre de régression
[Termes IGN] image Landsat-OLI
[Termes IGN] régression
[Termes IGN] signature spectrale
[Termes IGN] surface imperméable
[Termes IGN] Yunnan (Chine)
[Termes IGN] zone urbaineRésumé : (auteur) Linear spectral mixture analysis (LSMA) and regression analysis are the two most conventionally used methods to estimate impervious surfaces at the subpixel scale in an urban area. However, LSMA lacks the sensitivity to pixel brightness, which leads to inter variability of endmembers and affects the ability to distinguish features with a similar spectral signature. This research aims to develop LSMA aided by a regression analysis model to estimate impervious surfaces with higher accuracy. A spectral angle mapping (SAM) based regression analysis model is introduced to reduce errors. Based on high-resolution images and field survey data, the SAM-based regression analysis can estimate non-impervious surface and high-impervious surface densities with high accuracy, while less accurate in impervious surfaces with low/medium density. In contrast, LSMA is able to estimate low/medium-density impervious surfaces with higher accuracy. We propose an improved approach by integrating the two methods, regression analysis aided LSMA, for impervious surface estimation. The proposed method increases the overall accuracy of the impervious surface estimation to 85.24%, which is significantly greater than that of the conventional methods. Numéro de notice : A2022-098 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/22797254.2021.2018666 Date de publication en ligne : 05/01/2022 En ligne : https://doi.org/10.1080/22797254.2021.2018666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99548
in European journal of remote sensing > vol 55 n° 1 (2022) . - pp 37 - 51[article]Monitoring and analysis of crop irrigation dynamics in Central Italy through the use of MODIS NDVI data / Marta Chiesi in European journal of remote sensing, vol 55 n° 1 (2022)
[article]
Titre : Monitoring and analysis of crop irrigation dynamics in Central Italy through the use of MODIS NDVI data Type de document : Article/Communication Auteurs : Marta Chiesi, Auteur ; Luca Angeli, Auteur ; Piero Battista, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 23 - 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] bilan hydrique
[Termes IGN] carte agricole
[Termes IGN] cultures irriguées
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] irrigation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Toscane (Italie)Résumé : (auteur) A recent study has proposed and tested a semi-empirical method to estimate crop irrigation based on a water balance logic and Sentinel-2 Multi Spectral Instrument (MSI) NDVI imagery. The current paper aims at extending the same approach to the analysis of the main irrigation patterns occurred in Tuscany (Central Italy) during the 2000–2019 period. This operation was made possible by feeding the irrigation water (IW) estimation method with 250-m spatial resolution Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI images. The results of this operation were first assessed versus various reference datasets available for the region; next, the annual maps of IW estimated for the 20 study years were analyzed at province scale in conjunction with relevant agricultural statistics. The use of MODIS in place of MSI images reduces the IW estimation accuracy irregularly at local scale, depending on the size and spatial arrangement of irrigated and non-irrigated fields; the reduction in accuracy is, however, marginal over relatively large areas. Irrigated crops are decreasing throughout most Tuscany provinces, while they are increasing in the most southern and driest province. The possible reasons and implications of these findings are finally discussed in relation to the main environmental issues affecting the region. Numéro de notice : A2022-099 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1080/22797254.2021.2013735 Date de publication en ligne : 05/01/2022 En ligne : https://doi.org/10.1080/22797254.2021.2013735 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99549
in European journal of remote sensing > vol 55 n° 1 (2022) . - pp 23 - 36[article]