Journal of Spatial Information Science, JoSIS / Duckham, Matt . n° 23Paru le : 01/12/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierUsing textual volunteered geographic information to model nature-based activities: A case study from Aotearoa New Zealand / Ekaterina Egorova in Journal of Spatial Information Science, JoSIS, n° 23 (2021)
[article]
Titre : Using textual volunteered geographic information to model nature-based activities: A case study from Aotearoa New Zealand Type de document : Article/Communication Auteurs : Ekaterina Egorova, Auteur Année de publication : 2021 Article en page(s) : pp 25 - 63 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cognition
[Termes IGN] corpus
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données localisées des bénévoles
[Termes IGN] émotion
[Termes IGN] interaction homme-milieu
[Termes IGN] littérature
[Termes IGN] loisir
[Termes IGN] milieu naturel
[Termes IGN] Nouvelle-Zélande
[Termes IGN] réseau social
[Termes IGN] service écosystémiqueRésumé : (auteur) A boom in volunteered geographic information has led to extensive data-driven exploration and modeling of places. While many studies have used such data to explore human-environment interaction in urban settings, few have investigated natural, non-urban settings. To address this gap, this study systematically explores the content of online reviews of nature-based recreation activities, and develops a fine-grained hierarchical model that includes 28 aspects grouped into three main domains: activity, settings, and emotions/cognition. It further demonstrates how the model can be used to explore the variation in recreation experiences across activities, setting the stage for the analysis of the spatio-temporal variations in recreation experiences in the future. Importantly, the study provides an annotated corpus that can be used as a training dataset for developing methods to automatically capture aspects of recreation experiences in texts. Numéro de notice : A2021-950 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.5311/JOSIS.2021.23.157 Date de publication en ligne : 24/12/2021 En ligne : https://doi.org/10.5311/JOSIS.2021.23.157 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99644
in Journal of Spatial Information Science, JoSIS > n° 23 (2021) . - pp 25 - 63[article]