ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) . vol 11 n° 2Paru le : 01/02/2022 |
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierEmerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches / Li-Minn Ang in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
[article]
Titre : Emerging technologies for smart cities’ transportation: Geo-information, data analytics and machine learning approaches Type de document : Article/Communication Auteurs : Li-Minn Ang, Auteur ; Jasmine Kah Phooi Seng, Auteur ; Ericmoore Ngharamike, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 85 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] données massives
[Termes IGN] planification urbaine
[Termes IGN] système de transport intelligent
[Termes IGN] trafic routier
[Termes IGN] transport collectif
[Termes IGN] transport urbain
[Termes IGN] ville intelligente
[Termes IGN] zone urbaineRésumé : (auteur) With the recent increase in urban drift, which has led to an unprecedented surge in urban population, the smart city (SC) transportation industry faces a myriad of challenges, including the development of efficient strategies to utilize available infrastructures and minimize traffic. There is, therefore, the need to devise efficient transportation strategies to tackle the issues affecting the SC transportation industry. This paper reviews the state-of-the-art for SC transportation techniques and approaches. The paper gives a comprehensive review and discussion with a focus on emerging technologies from several information and data-driven perspectives including (1) geoinformation approaches; (2) data analytics approaches; (3) machine learning approaches; (4) integrated deep learning approaches; (5) artificial intelligence (AI) approaches. The paper contains core discussions on the impacts of geo-information on SC transportation, data-driven transportation and big data technology, machine learning approaches for SC transportation, innovative artificial intelligence (AI) approaches for SC transportation, and recent trends revealed by using integrated deep learning towards SC transportation. This survey paper aimed to give useful insights to researchers regarding the roles that data-driven approaches can be utilized for in smart cities (SCs) and transportation. An objective of this paper was to acquaint researchers with the recent trends and emerging technologies for SC transportation applications, and to give useful insights to researchers on how these technologies can be exploited for SC transportation strategies. To the best of our knowledge, this is the first comprehensive review that examines the impacts of the various five driving technological forces—geoinformation, data-driven and big data technology, machine learning, integrated deep learning, and AI—in the context of SC transportation applications. Numéro de notice : A2022-118 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020085 Date de publication en ligne : 24/01/2022 En ligne : https://doi.org/10.3390/ijgi11020085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99649
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 85[article]Assessment and mapping soil water erosion using RUSLE approach and GIS tools: Case of Oued el-Hai watershed, Aurès West, Northeastern of Algeria / Aida Bensekhria in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
[article]
Titre : Assessment and mapping soil water erosion using RUSLE approach and GIS tools: Case of Oued el-Hai watershed, Aurès West, Northeastern of Algeria Type de document : Article/Communication Auteurs : Aida Bensekhria, Auteur ; Rabah Bouhata, Auteur Année de publication : 2022 Article en page(s) : n° 84 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Algérie
[Termes IGN] Aurès, massif des
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] conservation des ressources naturelles
[Termes IGN] érosion hydrique
[Termes IGN] modèle RUSLE
[Termes IGN] outil d'aide à la décision
[Termes IGN] système d'information géographiqueRésumé : (auteur) The problem of soil water erosion is one of the primary causes of agro-pedological heritage degradation. The combined effect of natural factors and inappropriate human actions has weakened the soil, which seriously threatens the region’s fertile lands and soils, which can ultimately lead to an irreversible situation of desertification. This study focuses on analysis and mapping of the vulnerability to erosion in Oued el-Hai watershed, Algeria, based on a technical methodology that combines the universal soil loss equation (USLE) with the geographic information system (GIS) tools. The results are organized into three main classes of different rate values, from one area to another, depending on the influence of different factors that control the erosion process. The highest loss rate value is greater than 30 t·ha−1·yr−1 and covers 23.2% of the total area, mainly located in the mountainous areas with steep slopes. However, the minimum potential erosion rate value is mainly located on the plain, with an average of 10 t·ha−1·yr−1 covering 45.2% of the total area of the watershed. The estimate of potential water erosion has given alarming results. The total area of the watershed could lose a rate of 16.69 t·ha−1·yr−1 (on average) each year. The method and results described in this article are valuable for understanding the soil erosion risk and are useful for managing and planning land use that will avoid land degradation. Hence, the results of this study are considered an important document which constitutes a decision support tool in terms of the management and protection of natural resources. Numéro de notice : A2022-119 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020084 Date de publication en ligne : 24/01/2022 En ligne : https://doi.org/10.3390/ijgi11020084 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99650
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 84[article]Analysis of factors affecting adoption of volunteered geographic information in the context of national spatial data infrastructure / Munir Ahmad in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
[article]
Titre : Analysis of factors affecting adoption of volunteered geographic information in the context of national spatial data infrastructure Type de document : Article/Communication Auteurs : Munir Ahmad, Auteur ; Malik Sikandar Hayat Khayal, Auteur ; Ali Tahir, Auteur Année de publication : 2022 Article en page(s) : n° 120 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] données localisées des bénévoles
[Termes IGN] fiabilité des données
[Termes IGN] infrastructure nationale des données localisées
[Termes IGN] INSPIRE
[Termes IGN] modèle empirique
[Termes IGN] Pakistan
[Termes IGN] qualité des données
[Termes IGN] régression des moindres carrés partielsRésumé : (auteur) Spatial data infrastructures (SDIs) have been implemented for the last four decades in most countries. One of the key objectives of SDIs is to ensure the quick availability and accessibility of spatial data. The success of SDI depends on the underlying spatial datasets. Many developing countries such as Pakistan are facing problems in implementing SDI because of the unavailability of spatial data. Volunteered Geographic Information (VGI) is an alternate source for obtaining spatial data. Therefore, the question is what factors hamper the adoption of VGI for making it part of SDI in Pakistan. The intention behind this paper is to explore such factors as the key research question. To do so, we make use of the Technology–Organization–Environment (TOE) framework along with the partial least square structural equation model (PLS-SEM) to empirically analyze the factors impeding VGI from becoming part of SDI in the country. The study concludes that many technical, organizational, and environmental factors affect the adoption of VGI to be part of SDI in Pakistan. Numéro de notice : A2022-169 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020120 En ligne : https://doi.org/10.3390/ijgi11020120 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99798
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 120[article]Possibilities for assessment and geovisualization of spatial and temporal water quality data using a webGIS application / Daniel Balla in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
[article]
Titre : Possibilities for assessment and geovisualization of spatial and temporal water quality data using a webGIS application Type de document : Article/Communication Auteurs : Daniel Balla, Auteur ; Marianna Zichar, Auteur ; Emoke Kiss, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] contamination
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] évaluation
[Termes IGN] maladie infectieuse
[Termes IGN] outil d'aide à la décision
[Termes IGN] pollution des eaux
[Termes IGN] qualité des eaux
[Termes IGN] WebSIG
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The provision of webGIS-based water quality data services has become a priority area for both the public and administrative sectors in the context of the pandemic emergency associated with the global spread of COVID-19. Current geographic, monitoring and decision supporting systems, typically based on web-based geospatial information, greatly facilitate the sharing of spatial and temporal data from environmental databases and real-time analyses. In the present study, different water quality indices are determined, compared and geovisualized, during which the changes in the quality of the shallow groundwater resources of a settlement are examined in the period (2011–2019) in an eastern Hungarian settlement. Another objective of the research is to determine three water quality indices (Water Quality Index, CCME Water Quality Index, Contamination degree) and categorize water samples based on the same input spatial and temporal data using self-developed freely available geovisualization tools. Groundwater quality was assessed by using different water quality indices. Significant pollution of the groundwater in the time period before the installation of a sewage network was shown. Regarding water quality, significant positive changes were shown based on all three water quality indices in the years after installing a sewage network (2015–2019). The presence of pollution apart from the positive changes suggests that the purification processes will last for a long time. Numéro de notice : A2022-170 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020108 En ligne : https://doi.org/10.3390/ijgi11020108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99799
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 108[article]GisGCN: a visual graph-based framework to match geographical areas through time / Margarita Khokhlova in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)
[article]
Titre : GisGCN: a visual graph-based framework to match geographical areas through time Type de document : Article/Communication Auteurs : Margarita Khokhlova , Auteur ; Nathalie Abadie , Auteur ; Valérie Gouet-Brunet , Auteur ; Liming Chen, Auteur Année de publication : 2022 Projets : Alegoria / Gouet-Brunet, Valérie Article en page(s) : n° 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attribut géomètrique
[Termes IGN] attribut sémantique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] entité géographique
[Termes IGN] image aérienne
[Termes IGN] réseau sémantiqueRésumé : (auteur) Historical visual sources are particularly useful for reconstructing the successive states of the territory in the past and for analysing its evolution. However, finding visual sources covering a given area within a large mass of archives can be very difficult if they are poorly documented. In the case of aerial photographs, most of the time, this task is carried out by solely relying on the visual content of the images. Convolutional Neural Networks are capable to capture the visual cues of the images and match them to each other given a sufficient amount of training data. However, over time and across seasons, the natural and man-made landscapes may evolve, making historical image-based retrieval a challenging task. We want to approach this cross-time aerial indexing and retrieval problem from a different novel point of view: by using geometrical and topological properties of geographic entities of the researched zone encoded as graph representations which are more robust to appearance changes than the pure image-based ones. Geographic entities in the vertical aerial images are thought of as nodes in a graph, linked to each other by edges representing their spatial relationships. To build such graphs, we propose to use instances from topographic vector databases and state-of-the-art spatial analysis methods. We demonstrate how these geospatial graphs can be successfully matched across time by means of the learned graph embedding. Numéro de notice : A2022-156 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11020097 Date de publication en ligne : 29/01/2022 En ligne : https://doi.org/10.3390/ijgi11020097 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100316
in ISPRS International journal of geo-information > vol 11 n° 2 (February 2022) . - n° 97[article]