Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 88 n° 2Paru le : 01/02/2022 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
105-2022021 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierSpatiotemporal temperature fusion based on a deep convolutional network / Xuehan Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 2 (February 2022)
[article]
Titre : Spatiotemporal temperature fusion based on a deep convolutional network Type de document : Article/Communication Auteurs : Xuehan Wang, Auteur ; Zhenfeng Shao, Auteur ; Xiao Huang, Auteur ; Deren Li, Auteur Année de publication : 2022 Article en page(s) : pp 93 - 101 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion de données multisource
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] réseau neuronal convolutif
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] température de surfaceRésumé : (Auteur) High-spatiotemporal-resolution land surface temperature (LST) images are essential in various fields of study. However, due to technical constraints, sensing systems have difficulty in providing LSTs with both high spatial and high temporal resolution. In this study, we propose a multi-scale spatiotemporal temperature-image fusion network (MSTTIFN) to generate high-spatial-resolution LST products. The MSTTIFN builds nonlinear mappings between the input Moderate Resolution Imaging Spectroradiometer (MODIS) LSTs and the out- put Landsat LSTs at the target date with two pairs of references and therefore enhances the resolution of time-series LSTs. We conduct experiments on the actual Landsat and MODIS data in two study areas (Beijing and Shandong) and compare our proposed MSTTIFN with four competing methods: the Spatial and Temporal Adaptive Reflectance Fusion Model, the Flexible Spatiotemporal Data Fusion Model, a two-stream convolutional neural network (StfNet), and a deep learning-based spatiotemporal temperature-fusion network. Results reveal that the MSTTIFN achieves the best and most stable performance. Numéro de notice : A2022-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00023R2 Date de publication en ligne : 01/02/2022 En ligne : https://doi.org/10.14358/PERS.21-00023R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99724
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 2 (February 2022) . - pp 93 - 101[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022021 SL Revue Centre de documentation Revues en salle Disponible Three-Dimensional point cloud analysis for building seismic damage information / Fan Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 2 (February 2022)
[article]
Titre : Three-Dimensional point cloud analysis for building seismic damage information Type de document : Article/Communication Auteurs : Fan Yang, Auteur ; Zhiwei Fan, Auteur ; Chao Wen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 103 - 111 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] densité des points
[Termes IGN] détection du bâti
[Termes IGN] dommage matériel
[Termes IGN] données localisées 3D
[Termes IGN] extraction de données
[Termes IGN] filtrage de points
[Termes IGN] mur
[Termes IGN] séisme
[Termes IGN] semis de pointsRésumé : (Auteur) Postearthquake building damage assessment requires professional judgment; however, there are factors such as high workload and human error. Making use of Terrestrial Laser Scanning data, this paper presents a method for seismic damage information extraction. This new method is based on principal component analysis calculating the local surface curvature of each point in the point cloud. Then use the nearest point angle algorithm, combined with the data features of the actual measured value to identify point cloud seismic information, and filter the points that tend to the plane by setting the threshold value. Based on the statistical analysis of the normal vector, the raw point cloud data are deplanarized to obtain the preliminary results of seismic damage information. The density clustering algorithm is used to denoise the initially extracted seismic damage information. Ultimately, we can obtain the distribution patterns and characteristics of cracks in the walls of the building. The extraction result of the seismic damage information point cloud data is compared with the photos collected at the site, showing that the algorithm steps successfully identify the crack and shed wall skin information recorded in the site photos (identification rate: 95%). Point cloud distribution maps of cracked and shed siding areas determine quantitative information on seismic damage, providing a higher level of performance and detail than direct contact measurements. Numéro de notice : A2022-065 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00019R3 Date de publication en ligne : 01/02/2022 En ligne : https://doi.org/10.14358/PERS.21-00019R3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99727
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 2 (February 2022) . - pp 103 - 111[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022021 SL Revue Centre de documentation Revues en salle Disponible