Descripteur
Documents disponibles dans cette catégorie (29)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain / Arabinda Maiti in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain Type de document : Article/Communication Auteurs : Arabinda Maiti, Auteur ; Prasenjit Acharya, Auteur ; Srikanta Sannigrahi, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] Gange (fleuve)
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] mousson
[Termes IGN] plaine
[Termes IGN] rizièreRésumé : (auteur) We proposed a modification of the existing approach for mapping active paddy rice fields in monsoon-dominated areas. In the existing PPPM approach, LSWI higher than EVI at the transplantation stage enables the identification of rice fields. However, it fails to recognize the fields submerged later due to monsoon floods. In the proposed approach (IPPPM), the submerged fields, at the maximum greenness time, were excluded for better estimation. Sentinel–2A/2B time-series images were used for the year 2018 to map paddy rice over the Lower Gangetic Plain (LGP) using Google earth engine (GEE). The overall accuracy (OA) obtained from IPPPM was 85%. Further comparison with the statistical data reveals the IPPPM underestimates (slope (β1) = 0.77) the total reported paddy rice area, though R2 remains close to 0.9. The findings provide a basis for near real-time mapping of active paddy rice areas for addressing the issues of production and food security. Numéro de notice : A2022-924 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2022.2032396 En ligne : https://doi.org/10.1080/10106049.2022.2032396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99963
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Using Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study / W.D.K.V. Nandasena in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Using Google Earth Engine to classify unique forest and agroforest classes using a mix of Sentinel 2a spectral data and topographical features: a Sri Lanka case study Type de document : Article/Communication Auteurs : W.D.K.V. Nandasena, Auteur ; Lars Brabyn, Auteur ; Silvia Serrao-Neumanna, Auteur Année de publication : 2023 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] forêt
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] matrice de co-occurrence
[Termes IGN] occupation du sol
[Termes IGN] Sri LankaRésumé : (auteur) Global land cover classifications may lead to the loss of important local and national nuances such as forest and agroforestry classes. These classes are important to local contexts because they contribute to sustainable land management systems. This paper demonstrates the application of Sentinel-2A satellite images, elevation data, and the Google Earth Engine platform to generate more detailed, specialist land cover classification for forestry classes important in Sri Lanka deriving ten spectral, 16 textural, and three topographical features from the input datasets. The random forest classification model discriminates vegetation types as forest, forest plantations, shrub, grassland, home garden, and cultivation with an overall accuracy of 94% and kappa value of 0.91. Results indicate the elevation feature contributes the most to discriminate forest and agroforestry classes, and red band (664.6 nm) textural metrics derived from grey-level co-occurrence matrix analysis are more useful for separating the home garden from other land cover classes. Numéro de notice : A2023-094 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.2022010 Date de publication en ligne : 29/12/2021 En ligne : https://doi.org/10.1080/10106049.2021.2022010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99617
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine / Xingwen Lin in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
[article]
Titre : Estimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine Type de document : Article/Communication Auteurs : Xingwen Lin, Auteur ; Shengbiao Wu, Auteur ; Bin Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 20 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] albedo
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de transfert radiatif
[Termes IGN] phénologie
[Termes IGN] réflectance de surfaceRésumé : (auteur) Land surface albedo plays an important role in controlling the surface energy budget and regulating the biophysical processes of natural dynamics and anthropogenic activities. Satellite remote sensing is the only practical approach to estimate surface albedo at regional and global scales. It nevertheless remains challenging for current satellites to capture fine-scale albedo variations due to their coarse spatial resolutions from tens to hundreds of meters. The emerging Sentinel-2 satellites, with a high spatial resolution of 10 m and an approximate 5-day revisiting cycle, provide a promising solution to address these observational limitations, yet their potentials remain underexplored. In this study, we integrated the Sentinel-2 observations with an updated direct estimation approach to improve the estimation and monitoring of fine-scale surface albedo. To enable the capability of the direct estimation approach at a 10-m scale, we combined the 10-m resolution European Space Agency (ESA) WorldCover land cover data and the 500-m resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/albedo product to build a high-quality and representative BRDF training database. To evaluate our approach, we proposed an integrated evaluation framework leveraging 3-D physical model simulations, ground measurements, and satellite observations. Specifically, we first simulated a comprehensive dataset of Sentinel-2-like surface reflectance and broadband albedo across a variety of geometric configurations using the MODIS BRDF training samples. With this dataset, we built the Look-Up-Tables (LUTs) that connect surface broadband albedo and Sentinel-2 reflectance through a direct angular bin-based linear regression approach, and further coupled these LUTs with the Google Earth Engine (GEE) cloud-computing platform. We next evaluated the proposed algorithm at two spatial levels: (1) 10-m scale for absolute accuracy assessment using the references from the Discrete Anisotropic Radiative Transfer (DART) simulations and flux-site observations, and (2) 500-m scale for large-scale mapping assessment by comparing the estimated albedo with the MODIS albedo product. Lastly, we presented four examples to show the capability of Sentinel-2 albedo in detecting fine-scale characteristics of vegetation and urban covers. Results show that: (1) the proposed algorithm accurately estimates surface albedo from Sentinel-2-like reflectance across different landscape configurations (overall root-mean-square-error (RMSE) = 0.018, bias = 0.005, and coefficient of determination (R2) = 0.88); (2) the Sentinel-2-derived surface albedo agrees well with ground measurements (overall RMSE = 0.030, bias = -0.004, and R2 = 0.94) and MODIS products (overall RMSE = 0.030, bias = 0.021, and R2 = 0.97); and (3) Sentinel-2-derived albedo accurately captures seasonal leaf phenology and rapid snow events, and detects the interspecific (or interclass) variations of tree species and colored urban rooftops. These results demonstrate the capability of the proposed approach to map high-resolution surface albedo from Sentinel-2 satellites over large spatial and temporal contexts, suggesting the potential of using such fine-scale datasets to improve our understanding of albedo-related biophysical processes in the coupled human-environment system. Numéro de notice : A2022-823 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.016 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101999
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 1 - 20[article]The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)
[article]
Titre : The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas Type de document : Article/Communication Auteurs : Jun Li, Auteur ; Tianyu Guo, Auteur ; Chengye Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 665 - 671 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] Chine
[Termes IGN] couvert végétal
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] industrie minière
[Termes IGN] mine
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielRésumé : (auteur) To determine the fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas, six types of data were used as driving factors and three methods —multi-linear regression (MLR), geographically weighted regression (GWR), and geographically weighted artificial neural network (GWANN)— were adopted in the modeling. The experiments, conducted in Shengli mining areas located in Xilinhot city, China, show that the MLR model without consideration of spatial heterogeneity and spatial non-stationarity performs the worst and that the GWR model presents obvious location differences, since it predefines a linear relationship which is unable to describe FVC for some locations. The GWANN model, improving on these defects, is the most suitable model for the FVC driving process in mining areas; it outperforms the other two models, with root-mean-square error (RMSE) and mean absolute percentage error (MAPE) reaching 0.16 and 0.20. It has improvements of approximately 24% in RMSE and 33% in MAPE compared to the MLR model, and those values grow to 59% and 71% when compared with the GWR model. Numéro de notice : A2022-813 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00070R3 Date de publication en ligne : 01/10/2022 En ligne : https://doi.org/10.14358/PERS.21-00070R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101973
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 10 (October 2022) . - pp 665 - 671[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022101 SL Revue Centre de documentation Revues en salle Disponible Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska / Jiang Chen in Geocarto international, vol 37 n° 20 ([20/09/2022])
[article]
Titre : Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska Type de document : Article/Communication Auteurs : Jiang Chen, Auteur ; Weining Zhu, Auteur Année de publication : 2022 Article en page(s) : pp 6052 - 6071 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse comparative
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat-8
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] latitude
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] observation de la Terre
[Termes IGN] réflectance de surfaceRésumé : (auteur) Combining Landsat-8 and Sentinel-2 images is an effective approach to obtain high spatiotemporal resolution data for Earth observation and remote sensing modeling. The differences between Landsat-8 and Sentinel-2 products, such as the reflectance at the top of atmosphere (TOA) and land surface, should be compared and evaluated to make sure they are spectrally consistent. Their consistency has been evaluated and the differences have been empirically corrected at mid-low latitudes, but in high latitude areas with a higher solar zenith angle (SZA), the similar work has not been explored. In this study, Landsat-8 and Sentinel-2 TOA and surface reflectance in Alaska as well as some surface parameters, such as the normalized difference vegetation index (NDVI) and normalized difference snow index (NDSI), were compared using the massive data distributed on Google earth engine (GEE) online platform, and their consistency was evaluated and the uncertainty was analyzed. Some empirical models were suggested to convert Sentinel-2 products to be consistent with Landsat-8 products at all bands. The results show that TOA reflectance is more consistent than surface reflectance in Alaska. This study suggests that the consistency between Landsat-8 and Sentinel-2 at high latitudes should be paid more attention because their consistency is lower than that at mid-low latitudes. Numéro de notice : A2022-717 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1924295 Date de publication en ligne : 17/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1924295 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101642
in Geocarto international > vol 37 n° 20 [20/09/2022] . - pp 6052 - 6071[article]Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt / André Bertoncini in Remote sensing of environment, vol 278 (September 2022)PermalinkSimulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices / Najmeh Mozaffaree Pour in Environmental Monitoring and Assessment, vol 194 n° 9 (September 2022)PermalinkThe influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests / Vahid Nasiri in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)PermalinkAbout tree height measurement: Theoretical and practical issues for uncertainty quantification and mapping / Samuele De petris in Forests, vol 13 n° 7 (July 2022)PermalinkThe role of blue green infrastructure in the urban thermal environment across seasons and local climate zones in East Africa / Xueqin Li in Sustainable Cities and Society, vol 80 (May 2022)PermalinkAn open science and open data approach for the statistically robust estimation of forest disturbance areas / Saverio Francini in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)PermalinkForest fire susceptibility assessment using Google Earth engine in Gangwon-do, Republic of Korea / Yong Piao in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkMapping burned areas and land-uses in Kangaroo Island using an object-based image classification framework and Landsat 8 Imagery from Google Earth Engine / Jiyu Liu in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkMonitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon / Le Bienfaiteur Sagang Takougoum (2022)PermalinkEfficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine / Yongjing Mao in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)Permalink