Earth-Science Reviews . vol 221Paru le : 01/10/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierOn determination of the geoid from measured gradients of the Earth's gravity field potential / Pavel Novák in Earth-Science Reviews, vol 221 (October 2021)
[article]
Titre : On determination of the geoid from measured gradients of the Earth's gravity field potential Type de document : Article/Communication Auteurs : Pavel Novák, Auteur ; Michal Šprlák, Auteur ; Martin Pitoňák, Auteur Année de publication : 2021 Article en page(s) : n° 103773 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] géoïde terrestre
[Termes IGN] gradient de gravitation
[Termes IGN] modèle mathématique
[Termes IGN] modèle stochastique
[Termes IGN] précision centimétrique
[Termes IGN] problème des valeurs limitesRésumé : (auteur) The geoid is an equipotential surface of the static Earth's gravity field which plays a fundamental role in definition of physical heights related to the mean sea level (orthometric heights) in geodesy and which represents a reference surface in many geoscientific studies. Its determination with the cm-level accuracy or better, in particular over dry land, belongs to major tasks of modern geodesy. Traditional data and underlined theory have significantly been affected in recent years by rapid advances in observation techniques. This study reviews gradients of the disturbing gravity potential, both currently available and foreseen, and systematically discusses mathematical models for geoid determination based on gradient data. Fundamentals required for geoid definition and its estimation from measured potential gradients are shortly reviewed at the beginning of the text. Then particular mathematical models based on solutions to boundary-value problems of the potential theory, which include both integral transforms and integral equations, are formulated. Properties of respective integral kernel functions are demonstrated and discussed. With the new mathematical models introduced, new research topics are opened which must be resolved in order to allow for their full-fledged applicability in geoid modelling. Stochastic modelling is also discussed which estimates gradient spatial resolution and accuracy required for geoid modelling with the cm-level accuracy. Results of stochastic modelling suggest that the cm-geoid can be estimated using available gradient data if related problems, namely reduction of gradient data for gravitational effects of all masses outside the geoid and their downward continuation, are solved at the same level of accuracy. Numéro de notice : A2021-944 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.earscirev.2021.103773 Date de publication en ligne : 14/09/2021 En ligne : https://doi.org/10.1016/j.earscirev.2021.103773 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99756
in Earth-Science Reviews > vol 221 (October 2021) . - n° 103773[article]