Geoinformatica . vol 25 n° 4Mention de date : October 2021 Paru le : 01/10/2021 |
[n° ou bulletin]
est un bulletin de Geomatica / Canadian institute of geomatics = Association canadienne des sciences géomatiques (Canada) (1993 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierConsistency assessment for open geodata integration: an ontology-based approach / Linfang Ding in Geoinformatica, vol 25 n° 4 (October 2021)
[article]
Titre : Consistency assessment for open geodata integration: an ontology-based approach Type de document : Article/Communication Auteurs : Linfang Ding, Auteur ; Guohui Xiao, Auteur ; Diego Calvanese, Auteur ; Liqiu Meng, Auteur Année de publication : 2021 Article en page(s) : pp 733 - 758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] cadre conceptuel
[Termes IGN] cohérence des données
[Termes IGN] données hétérogènes
[Termes IGN] données localisées
[Termes IGN] données ouvertes
[Termes IGN] intégration de données
[Termes IGN] Italie
[Termes IGN] ontologieRésumé : (auteur) Integrating heterogeneous geospatial data sources is important in various domains like smart cities, urban planning and governance, but remains a challenging research problem. In particular, the production of high-quality integrated data from multiple sources requires an understanding of their respective characteristics and a systematic assessment of the consistency within and between the data sources. In order to perform the assessment, the data has to be placed on a common ground. However, in practice, heterogeneous geodata are often provided in diverse formats and organized in significantly different structures. In this work, we propose a framework that uses an ontology-based approach to overcome the heterogeneity by means of a domain ontology, so that consistency rules can be evaluated at the unified ontological representation of the data sources. In our case study, we use open governmental data from Open Data Portals (ODPs) and volunteered geographic information from OpenStreetMap (OSM) as two test data sources in the area of the province of South Tyrol, Italy. Our preliminary experiment shows that the approach is effective in detecting inconsistencies within and between ODP and OSM data. These findings provide valuable insights for a better combined usage of these datasets. Numéro de notice : A2021-967 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-019-00384-9 Date de publication en ligne : 03/12/2019 En ligne : https://doi.org/10.1007/s10707-019-00384-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100388
in Geoinformatica > vol 25 n° 4 (October 2021) . - pp 733 - 758[article]Bi- and three-dimensional urban change detection using sentinel-1 SAR temporal series / Meiqin Che in Geoinformatica, vol 25 n° 4 (October 2021)
[article]
Titre : Bi- and three-dimensional urban change detection using sentinel-1 SAR temporal series Type de document : Article/Communication Auteurs : Meiqin Che, Auteur ; Paolo Gamba, Auteur Année de publication : 2021 Article en page(s) : pp 759 - 773 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] banlieue
[Termes IGN] centre-ville
[Termes IGN] Chine
[Termes IGN] détection de changement
[Termes IGN] image Sentinel-SAR
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (auteur) Urban areas are subject to multiple and very different changes, in a two- and three-dimensional sense, mostly as a consequence of human activities, such as urbanization, but also because of catastrophic and sudden events, such as earthquakes, landslides, or floods. This paper aims at designing a procedure able to cope with both types of changes by combining interferometric coherence and backscatter amplitude, and provide a semantically meaningful analysis of the changes detected in both city inner cores and suburban areas. Specifically, this paper focuses on detecting multi-dimensional changes in urban areas using a stack of repeat-pass SAR data sets from Sentinel-1A/B satellites. The proposed procedure jointly exploits amplitude and coherence time series to perform this task. SAR amplitude is used to extract changes about the urban extents, i.e. in 2D, while interferometric coherence is sensitive to the presence of buildings and to their size, i. e. to 3D changes. The proposed algorithm is tested using a time-series of two years of Sentinel-1 data, from May 2016 to October 2018, and in two different Chinese cities, Changsha and Hangzhou, with the aim to understand both the temporal evolution of the urban extents, and the changes within what is constantly classified as “urban” throughout the considered time period. Numéro de notice : A2021-966 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s10707-020-00398-8 Date de publication en ligne : 22/02/2020 En ligne : https://doi.org/10.1007/s10707-020-00398-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100389
in Geoinformatica > vol 25 n° 4 (October 2021) . - pp 759 - 773[article]