[n° ou bulletin]
est un bulletin de Geomatica / Canadian institute of geomatics = Association canadienne des sciences géomatiques (Canada) (1993 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierContextual location recommendation for location-based social networks by learning user intentions and contextual triggers / Seyyed Mohammadreza Rahimi in Geoinformatica, vol 26 n° 1 (January 2022)
[article]
Titre : Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] comportement
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] covariance
[Termes IGN] données spatiotemporelles
[Termes IGN] historique des données
[Termes IGN] interface web
[Termes IGN] mobilité territoriale
[Termes IGN] prise en compte du contexte
[Termes IGN] réseau social géodépendant
[Termes IGN] service fondé sur la position
[Termes IGN] système de recommandationRésumé : (auteur) Location recommendation methods suggest unvisited locations to their users. Many existing location recommendation methods focus on the spatial, social and temporal aspects of human movements. However, contextual information is also invaluable to location recommendation methods and has the great potential for explaining what triggers users to show different behaviors. CLR learns the response of the users to contextual variables based on their own history and the history of similar behaving users. In this paper, we propose a contextual location recommendation method named Contextual Location Recommendation (CLR) that learns the intention and spatial responses of users to various contextual triggers using the historical check-in and contextual information. CLR starts with a co-variance analysis to reduce dimensionality of the check-in data and then uses an optimized version of the random walk with restart to extract hidden user responses to contextual triggers. A tensor factorization is used to build a latent-factor model to predict the user’s intention response with the given set of contextual triggers. Based on the intention response of the user, a contextual spatial component identifies a set of matching locations accessible to the user by estimating the probability distribution of the location of the user and the popularity probability of locations under the contextual settings. Experimental results on three real-world datasets show that CLR improves the recommendation precision by 35% compared to the best-performing baseline recommendation method. Numéro de notice : A2022-203 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00437-y Date de publication en ligne : 02/06/2021 En ligne : https://doi.org/10.1007/s10707-021-00437-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100008
in Geoinformatica > vol 26 n° 1 (January 2022) . - pp 1 - 28[article]CIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica, vol 26 n° 1 (January 2022)
[article]
Titre : CIME: Context-aware geolocation of emergency-related posts Type de document : Article/Communication Auteurs : Gabriele Scalia, Auteur ; Chiara Francalanci, Auteur ; Barbara Pernici, Auteur Année de publication : 2022 Article en page(s) : pp 125 - 157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] cartographie d'urgence
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] exploration de données
[Termes IGN] géolocalisation
[Termes IGN] géoréférencement
[Termes IGN] Grande-Bretagne
[Termes IGN] implémentation (informatique)
[Termes IGN] inondation
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] prise en compte du contexte
[Termes IGN] tempête
[Termes IGN] TwitterRésumé : (auteur) Information extracted from social media has proven to be very useful in the domain of emergency management. An important task in emergency management is rapid crisis mapping, which aims to produce timely and reliable maps of affected areas. During an emergency, the volume of emergency-related posts is typically large, but only a small fraction is relevant and help rapid mapping effectively. Furthermore, posts are not useful for mapping purposes unless they are correctly geolocated and, on average, less than 2% of posts are natively georeferenced. This paper presents an algorithm, called CIME, that aims to identify and geolocate emergency-related posts that are relevant for mapping purposes. While native geocoordinates are most often missing, many posts contain geographical references in their metadata, such as texts or links that can be used by CIME to filter and geolocate information. In addition, social media creates a social network and each post can be enhanced with indirect information from the post’s network of relationships with other posts (for example, a retweet can be associated with other geographical references which are useful to geolocate the original tweet). To exploit all this information, CIME uses the concept of context, defined as the information characterizing a post both directly (the post’s metadata) and indirectly (the post’s network of relationships). The algorithm was evaluated on a recent major emergency event demonstrating better performance with respect to the state of the art in terms of total number of geolocated posts, geolocation accuracy and relevance for rapid mapping. Numéro de notice : A2022-204 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00446-x Date de publication en ligne : 28/07/2021 En ligne : https://doi.org/10.1007/s10707-021-00446-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100011
in Geoinformatica > vol 26 n° 1 (January 2022) . - pp 125 - 157[article]