Canadian journal of remote sensing / Canadian remote sensing society . vol 47 n° 6Paru le : 01/11/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierLand subsidence in Beijing’s sub-administrative center and its relationship with urban expansion inferred from Sentinel-1/2 observations / Jin Cao in Canadian journal of remote sensing, vol 47 n° 6 ([01/11/2021])
[article]
Titre : Land subsidence in Beijing’s sub-administrative center and its relationship with urban expansion inferred from Sentinel-1/2 observations Titre original : Affaissement du sol dans le centre sous administratif de Beijing et sa relation avec l’expansion urbaine déduits des observations de Sentinel-1/2 Type de document : Article/Communication Auteurs : Jin Cao, Auteur ; Huili Gong, Auteur ; Beibei Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 802 - 817 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] croissance urbaine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Pékin (Chine)
[Termes IGN] subsidenceRésumé : (auteur) Beijing’s Sub-Administrative Center (BSAC) is located in the South-eastern Beijing Plain, which exhibits severe subsidence. The rapid urban expansion in recent years has aggravated land subsidence and threatens the safe operation of Beijing. First, this study applied the persistent scatterer-interferometric synthetic aperture radar (PS-InSAR) to extract BSAC subsidence time series data. Second, combined with the index-based built-up index (IBI), expansion intensity index (EII), and expansion gradient index (EGI), the spatiotemporal characteristics of urban expansion were retrieved from optical data. Finally, we examined the urban expansion effects on land subsidence at the regional and single-building scales. The results showed that the maximum subsidence velocity in the BSAC reached 121 mm/year from 2015 to 2018, and the urban construction land area increased by 22%. At the regional scale, there existed a positive correlation between land subsidence and EGI or EII. This indicated that urban expansion had a certain impact on land subsidence. Therefore, we further explored the relationship between construction and land subsidence at the single-building scale. The engineering construction effects on land subsidence were divided into three periods, namely, rapid settlement, rebound, and stable periods. Although construction had a significant influence on land subsidence, it did not cause subsidence mutation. Numéro de notice : A2021-955 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/07038992.2021.1964944 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.1080/07038992.2021.1964944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99981
in Canadian journal of remote sensing > vol 47 n° 6 [01/11/2021] . - pp 802 - 817[article]Multi-sensor aboveground biomass estimation in the broadleaved hyrcanian forest of Iran / Ghasem Ronoud in Canadian journal of remote sensing, vol 47 n° 6 ([01/11/2021])
[article]
Titre : Multi-sensor aboveground biomass estimation in the broadleaved hyrcanian forest of Iran Titre original : Estimation multi-capteurs de la biomasse aérienne de la forêt de feuillus hyrcanienne d’Iran Type de document : Article/Communication Auteurs : Ghasem Ronoud, Auteur ; Parviz Fatehi, Auteur ; Ali Asghar Darvishsefat, Auteur Année de publication : 2021 Article en page(s) : pp 818 - 834 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse aérienne
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] estimation statistique
[Termes IGN] Fagus orientalis
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Iran
[Termes IGN] régression multiple
[Vedettes matières IGN] Inventaire forestierMots-clés libres : Support Vector Regression Résumé : (auteur) In this study, the capability of Landsat-8 (L8), Sentinel-2 (S2), Sentinel-1 (S1), and their combination was investigated for estimating aboveground biomass (AGB). A pure stand of Fagus Orientalis located in the Hyrcanian forest of Iran was selected as the study area. The performance of a parametric approach, i.e., Multiple Linear Regression (MLR) model and non-parametric approaches, i.e., k-Nearest Neighbor (k-NN), Random Forest (RF), and Support Vector Regression (SVR), were also evaluated for AGB estimations. Our results indicated that among S2 metrics, the FAPAR canopy biophysical index and NDVI index based on the red-edge band (NIR-b8a) have the highest correlation coefficient (r) of 0.420 and 0.417, respectively. The results of AGB estimation showed that a combination of S2 and S1 datasets using the k-NN algorithm had the best accuracy (R2 of 0.57 and rRMSE of 14.68%). The best rRMSE using L8, S2, and S1 datasets was 18.95, 16.99, and 19.17% using k-NN, k-NN, and MLR algorithms, respectively. The combination of L8 with S1 dataset also improved the rRMSE relative to L8 and S1 separately by 0.96 and 1.18%, respectively. We concluded that the combination of optical data (L8 or S2) with SAR data (S1) improves the broadleaved Hyrcanian AGB estimation. Numéro de notice : A2021-956 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article DOI : 10.1080/07038992.2021.1968811 Date de publication en ligne : 07/09/2021 En ligne : https://doi.org/10.1080/07038992.2021.1968811 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99982
in Canadian journal of remote sensing > vol 47 n° 6 [01/11/2021] . - pp 818 - 834[article]