Remote sensing . vol 14 n° 5Paru le : 01/03/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierLand surface phenology retrieval through spectral and angular harmonization of Landsat-8, Sentinel-2 and Gaofen-1 data / Jun Lu in Remote sensing, vol 14 n° 5 (March-1 2022)
[article]
Titre : Land surface phenology retrieval through spectral and angular harmonization of Landsat-8, Sentinel-2 and Gaofen-1 data Type de document : Article/Communication Auteurs : Jun Lu, Auteur ; Tao He, Auteur ; Dan-Xia Song, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1296 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] fusion de données multisource
[Termes IGN] harmonisation des données
[Termes IGN] image Gaofen
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] phénologie
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelleRésumé : (auteur) Land Surface Phenology is an important characteristic of vegetation, which can be informative of its response to climate change. However, satellite-based identification of vegetation transition dates is hindered by inconsistencies in different observation platforms, including band settings, viewing angles, and scale effects. Therefore, time-series data with high consistency are necessary for monitoring vegetation phenology. This study proposes a data harmonization approach that involves band conversion and bidirectional reflectance distribution function (BRDF) correction to create normalized reflectance from Landsat-8, Sentinel-2A, and Gaofen-1 (GF-1) satellite data, characterized by the same spectral and illumination-viewing angles as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Nadir BRDF Adjusted Reflectance (NBAR). The harmonized data are then subjected to the spatial and temporal adaptive reflectance fusion model (STARFM) to produce time-series data with high spatio–temporal resolution. Finally, the transition date of typical vegetation was estimated using regular 30 m spatial resolution data. The results show that the data harmonization method proposed in this study assists in improving the consistency of different observations under different viewing angles. The fusion result of STARFM was improved after eliminating differences in the input data, and the accuracy of the remote-sensing-based vegetation transition date was improved by the fused time-series curve with the input of harmonized data. The root mean square error (RMSE) estimation of the vegetation transition date decreased by 9.58 days. We concluded that data harmonization eliminates the viewing-angle effect and is essential for time-series vegetation monitoring through improved data fusion. Numéro de notice : A2022-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14051296 Date de publication en ligne : 07/03/2022 En ligne : https://doi.org/10.3390/rs14051296 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100027
in Remote sensing > vol 14 n° 5 (March-1 2022) . - n° 1296[article]Deep-learning-based multispectral image reconstruction from single natural color RGB image - Enhancing UAV-based phenotyping / Jiangsan Zhao in Remote sensing, vol 14 n° 5 (March-1 2022)
[article]
Titre : Deep-learning-based multispectral image reconstruction from single natural color RGB image - Enhancing UAV-based phenotyping Type de document : Article/Communication Auteurs : Jiangsan Zhao, Auteur ; Ajay Kumar, Auteur ; Balaji Naik Banoth, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1272; Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agriculture de précision
[Termes IGN] apprentissage profond
[Termes IGN] erreur absolue
[Termes IGN] image multibande
[Termes IGN] image RVB
[Termes IGN] Inde
[Termes IGN] phénologie
[Termes IGN] reconstruction d'imageRésumé : (auteur) Multispectral images (MSIs) are valuable for precision agriculture due to the extra spectral information acquired compared to natural color RGB (ncRGB) images. In this paper, we thus aim to generate high spatial MSIs through a robust, deep-learning-based reconstruction method using ncRGB images. Using the data from the agronomic research trial for maize and breeding research trial for rice, we first reproduced ncRGB images from MSIs through a rendering model, Model-True to natural color image (Model-TN), which was built using a benchmark hyperspectral image dataset. Subsequently, an MSI reconstruction model, Model-Natural color to Multispectral image (Model-NM), was trained based on prepared ncRGB (ncRGB-Con) images and MSI pairs, ensuring the model can use widely available ncRGB images as input. The integrated loss function of mean relative absolute error (MRAEloss) and spectral information divergence (SIDloss) were most effective during the building of both models, while models using the MRAEloss function were more robust towards variability between growing seasons and species. The reliability of the reconstructed MSIs was demonstrated by high coefficients of determination compared to ground truth values, using the Normalized Difference Vegetation Index (NDVI) as an example. The advantages of using “reconstructed” NDVI over Triangular Greenness Index (TGI), as calculated directly from RGB images, were illustrated by their higher capabilities in differentiating three levels of irrigation treatments on maize plants. This study emphasizes that the performance of MSI reconstruction models could benefit from an optimized loss function and the intermediate step of ncRGB image preparation. The ability of the developed models to reconstruct high-quality MSIs from low-cost ncRGB images will, in particular, promote the application for plant phenotyping in precision agriculture. Numéro de notice : A2022-210 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14051272 Date de publication en ligne : 05/03/2022 En ligne : https://doi.org/10.3390/rs14051272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100033
in Remote sensing > vol 14 n° 5 (March-1 2022) . - n° 1272;[article]A cost-effective method for reconstructing city-building 3D models from sparse Lidar point clouds / Marek Kulawiak in Remote sensing, vol 14 n° 5 (March-1 2022)
[article]
Titre : A cost-effective method for reconstructing city-building 3D models from sparse Lidar point clouds Type de document : Article/Communication Auteurs : Marek Kulawiak, Auteur Année de publication : 2022 Article en page(s) : n° 1278 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Bâti-3D
[Termes IGN] contour
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Gdansk
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de points clairsemés
[Termes IGN] triangulation de DelaunayRésumé : (auteur) The recent popularization of airborne lidar scanners has provided a steady source of point cloud datasets containing the altitudes of bare earth surface and vegetation features as well as man-made structures. In contrast to terrestrial lidar, which produces dense point clouds of small areas, airborne laser sensors usually deliver sparse datasets that cover large municipalities. The latter are very useful in constructing digital representations of cities; however, reconstructing 3D building shapes from a sparse point cloud is a time-consuming process because automatic shape reconstruction methods work best with dense point clouds and usually cannot be applied for this purpose. Moreover, existing methods dedicated to reconstructing simplified 3D buildings from sparse point clouds are optimized for detecting simple building shapes, and they exhibit problems when dealing with more complex structures such as towers, spires, and large ornamental features, which are commonly found e.g., in buildings from the renaissance era. In the above context, this paper proposes a novel method of reconstructing 3D building shapes from sparse point clouds. The proposed algorithm has been optimized to work with incomplete point cloud data in order to provide a cost-effective way of generating representative 3D city models. The algorithm has been tested on lidar point clouds representing buildings in the city of Gdansk, Poland. Numéro de notice : A2022-211 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14051278 Date de publication en ligne : 05/03/2022 En ligne : https://doi.org/10.3390/rs14051278 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100044
in Remote sensing > vol 14 n° 5 (March-1 2022) . - n° 1278[article]