Descripteur
Termes IGN > sciences naturelles > physique > traitement du signal > représentation parcimonieuse
représentation parcimonieuseSynonyme(s)représentation creuse représentation éparse |
Documents disponibles dans cette catégorie (12)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification / Yongqiang Mao in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
[article]
Titre : Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification Type de document : Article/Communication Auteurs : Yongqiang Mao, Auteur ; Kaiqiang chen, Auteur ; Wenhui Diao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 45 - 61 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] Perceptron multicouche
[Termes IGN] représentation parcimonieuse
[Termes IGN] réseau neuronal de graphes
[Termes IGN] semis de points
[Termes IGN] stratification de données
[Termes IGN] voxelRésumé : (Auteur) The classification of airborne laser scanning (ALS) point clouds is a critical task of remote sensing and photogrammetry fields. Although recent deep learning-based methods have achieved satisfactory performance, they have ignored the unicity of the receptive field, which makes the ALS point cloud classification remain challenging for the distinguishment of the areas with complex structures and extreme scale variations. In this article, for the objective of configuring multi-receptive field features, we propose a novel receptive field fusion-and-stratification network (RFFS-Net). With a novel dilated graph convolution (DGConv) and its extension annular dilated convolution (ADConv) as basic building blocks, the receptive field fusion process is implemented with the dilated and annular graph fusion (DAGFusion) module, which obtains multi-receptive field feature representation through capturing dilated and annular graphs with various receptive regions. The stratification of the receptive fields with point sets of different resolutions as the calculation bases is performed with Multi-level Decoders nested in RFFS-Net and driven by the multi-level receptive field aggregation loss (MRFALoss) to drive the network to learn in the direction of the supervision labels with different resolutions. With receptive field fusion-and-stratification, RFFS-Net is more adaptable to the classification of regions with complex structures and extreme scale variations in large-scale ALS point clouds. Evaluated on the ISPRS Vaihingen 3D dataset, our RFFS-Net significantly outperforms the baseline (i.e. PointConv) approach by 5.3% on mF1 and 5.4% on mIoU, accomplishing an overall accuracy of 82.1%, an mF1 of 71.6%, and an mIoU of 58.2%. The experiments show that our RFFS-Net achieves a new state-of-the-art classification performance on powerline, car, and fence classes. Furthermore, experiments on the LASDU dataset and the 2019 IEEE-GRSS Data Fusion Contest dataset show that RFFS-Net achieves a new state-of-the-art classification performance. The code is available at github.com/WingkeungM/RFFS-Net. Numéro de notice : A2022-273 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.019 Date de publication en ligne : 07/04/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100532
in ISPRS Journal of photogrammetry and remote sensing > vol 188 (June 2022) . - pp 45 - 61[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022061 SL Revue Centre de documentation Revues en salle Disponible 081-2022063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Hyperspectral image fusion and multitemporal image fusion by joint sparsity / Han Pan in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
[article]
Titre : Hyperspectral image fusion and multitemporal image fusion by joint sparsity Type de document : Article/Communication Auteurs : Han Pan, Auteur ; Zhongliang Jing, Auteur ; Henry Leung, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7887 - 7900 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] correction d'image
[Termes IGN] flou
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multitemporelle
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] représentation parcimonieuseRésumé : (auteur) Different image fusion systems have been developed to deal with the massive amounts of image data for different applications, such as remote sensing, computer vision, and environment monitoring. However, the generalizability and versatility of these fusion systems remain unknown. This article proposes an efficient regularization framework to achieve different kinds of fusion tasks accounting for the spatiospectral and spatiotemporal variabilities of the fusion process. A joint minimization functional is developed by taking an advantage of a composite regularizer for enforcing joint sparsity in the gradient domain and the frame domain. The proposed composite regularizer is composed of the Hessian Schatten-norm regularization and contourlet-based regularization terms. The resulting problems are solved by the alternating direction method of multipliers (ADMM). The effectiveness of the proposed method is validated in a variety of image fusion experiments: 1) hyperspectral (HS) and panchromatic image fusion; 2) HS and multispectral image fusion; 3) multitemporal image fusion (MIF); and 4) multi-image deblurring. Results show promising performance compared with state-of-the-art fusion methods. Numéro de notice : A2021-649 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3039046 Date de publication en ligne : 07/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3039046 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98360
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 9 (September 2021) . - pp 7887 - 7900[article]Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network / Nantheera Anantrasirichai in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network Type de document : Article/Communication Auteurs : Nantheera Anantrasirichai, Auteur ; Juliet Biggs, Auteur ; Krisztina Kelevitz, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2940 - 2950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] bati
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] effet atmosphérique
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] interpolation spatiale
[Termes IGN] matrice
[Termes IGN] optimisation (mathématiques)
[Termes IGN] représentation parcimonieuse
[Termes IGN] Royaume-Uni
[Termes IGN] zone urbaineRésumé : (auteur) The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of nonexpert stakeholders a challenge. Here, we explore the applicability of deep learning approaches by adapting a pretrained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the U.K. where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides, and tunneling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exist to construct a balanced training data set, and the deformation signals are slower and more localized than in previous applications. We propose three enhancement methods to tackle these problems: 1) spatial interpolation with modified matrix completion; 2) a synthetic training data set based on the characteristics of the real U.K. velocity map; and 3) enhanced overwrapping techniques. Using velocity maps spanning 2015–2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides, and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems. Numéro de notice : A2021-283 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-020-00323-6 Date de publication en ligne : 31/08/2020 En ligne : https://doi.org/10.1007/s12518-020-00323-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97391
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 2940 - 2950[article]Fusion of sparse model based on randomly erased image for SAR occluded target recognition / Zhiqiang He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Fusion of sparse model based on randomly erased image for SAR occluded target recognition Type de document : Article/Communication Auteurs : Zhiqiang He, Auteur ; Huaitie Xiao, Auteur ; Chao Gao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7829 - 7844 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] cible cachée
[Termes IGN] détection de cible
[Termes IGN] détection de partie cachée
[Termes IGN] image radar moirée
[Termes IGN] reconstruction d'image
[Termes IGN] représentation parcimonieuseRésumé : (auteur) The recognition of partially occluded targets is a difficult problem in the field of synthetic aperture radar (SAR) target recognition. To eliminate the effect of occlusion, the intuitive idea is to determine the exact location and the size of the occluded area. However, this is very difficult, even impossible in practice. In order to avoid this difficulty and to improve the recognition performance for the partially occluded target, a fusion strategy of the sparse representation (SR) model based on randomly erased images is proposed to recognize the partially occluded target. The proposed method randomly erases some areas many times in both the test samples and the training samples. The erased training samples in each erasure are used to sparsely represent the corresponding erased test sample. Finally, all the SR results are fused to recognize the test sample. The proposed method utilizes random erasure to eliminate the possible occluded region. In addition, this method uses the fusion strategy to overcome under-erasing of the occluded region and erroneous erasure of the unoccluded region. The key parameter of the proposed method is the erasure ratio only. Although the erasure is random, the recognition performance of the method is relatively stable. Therefore, the method can eliminate the influence of occlusion without determining the details of occlusion. The experimental results show that the proposed method is significantly better than the state-of-the-art methods in the case of occlusion. Additionally, the recognition performance of the proposed method is similar to some comparison methods in the case of no occlusion. Numéro de notice : A2020-680 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2984577 Date de publication en ligne : 14/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2984577 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96204
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7829 - 7844[article]
Titre : Estimation parcimonieuse de biais multitrajets pour les systèmes GNSS Type de document : Thèse/HDR Auteurs : Julien Lesouple, Auteur ; Jean-Yves Tourneret, Auteur ; François Vincent, Auteur Editeur : Toulouse : Université de Toulouse Année de publication : 2019 Importance : 217 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse, spécialité : Informatique et TélécommunicationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] chaîne de Markov
[Termes IGN] correction du trajet multiple
[Termes IGN] distribution de Gauss
[Termes IGN] erreur de mesure
[Termes IGN] erreur systématique
[Termes IGN] estimation bayesienne
[Termes IGN] filtrage du signal
[Termes IGN] mesurage par GNSS
[Termes IGN] récepteur GNSS
[Termes IGN] représentation parcimonieuse
[Termes IGN] traitement du signal
[Termes IGN] trajet multipleIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L’évolution des technologies électroniques (miniaturisation, diminution des coûts) a permis aux GNSS (systèmes de navigation par satellites) d’être de plus en plus accessibles et donc utilisés au quotidien, par exemple par le biais d’un smartphone, ou de récepteurs disponibles dans le commerce à des prix raisonnables (récepteurs bas-coûts). Ces récepteurs fournissent à l’utilisateur plusieurs informations, comme par exemple sa position et sa vitesse, ainsi que des mesures des temps de propagation entre le récepteur et les satellites visibles entre autres. Ces récepteurs sont donc devenus très répandus pour les utilisateurs souhaitant évaluer des techniques de positionnement sans développer tout le hardware nécessaire. Les signaux issus des satellites GNSS sont perturbés par de nombreuses sources d’erreurs entre le moment où ils sont traités par le récepteurs pour estimer la mesure correspondante. Il est donc nécessaire decompenser chacune des ces erreurs afin de fournir à l’utilisateur la meilleure position possible. Une des sources d’erreurs recevant beaucoup d’intérêt, est le phénomène de réflexion des différents signaux sur les éventuels obstacles de la scène dans laquelle se trouve l’utilisateur, appelé multitrajets. L’objectif de cette thèse est de proposer des algorithmes permettant de limiter l’effet des multitrajets sur les mesures GNSS. La première idée développée dans cette thèse est de supposer que ces signaux multitrajets donnent naissance à des biais additifs parcimonieux. Cette hypothèse de parcimonie permet d’estimer ces biais à l’aide de méthodes efficaces comme le problème LASSO. Plusieurs variantes ont été développés autour de cette hypothèse visant à contraindre le nombre de satellites ne souffrant pas de multitrajet comme non nul. La deuxième idée explorée dans cette thèse est une technique d’estimation des erreurs de mesure GNSS à partir d’une solution de référence, qui suppose que les erreurs dues aux multitrajets peuvent se modéliser à l’aide de mélanges de Gaussiennes ou de modèles de Markov cachés. Deux méthodes de positionnement adaptées à ces modèles sont étudiées pour la navigation GNSS. Note de contenu : Introduction
1- La navigation par satellites
2- Estimation parcimonieuse pour la navigation par satellites
3- Estimation Bayésienne des hyperparamètres
4- Utilisation de mélanges de Gaussiennes pour la modélisation des erreurs GNSS
Conclusion et perspectivesNuméro de notice : 25802 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Thèse française Note de thèse : thèse de Doctorat : Informatique et Télécommunication : Toulouse : 2019 nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2019INPT0020 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95044 Sparse signal modeling: Application to image compression, Image error concealment and compressed sensing / Ali Akbari (2018)PermalinkNew point matching algorithm using sparse representation of image patch feature for SAR image registration / Jianwei Fan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)PermalinkAdaptive spectral–spatial compression of hyperspectral image with sparse representation / Wei Fu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)PermalinkJoint sparse representation and multitask learning for hyperspectral target detection / Yuxiang Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)PermalinkNoise removal from hyperspectral image with joint spectral–spatial distributed sparse representation / Jie Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)PermalinkHyperspectral and multispectral image fusion based on a sparse representation / Qi Wei in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)PermalinkSpectral–spatial hyperspectral image classification via multiscale adaptive sparse representation / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 12 (December 2014)Permalink