Descripteur
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Wheat leaf area index retrieval using RISAT-1 hybrid polarized SAR data / Thota Sivasankar in Geocarto international, Vol 35 n° 8 ([01/06/2020])
[article]
Titre : Wheat leaf area index retrieval using RISAT-1 hybrid polarized SAR data Type de document : Article/Communication Auteurs : Thota Sivasankar, Auteur ; Dheeraj Kumar, Auteur ; Hari Shanker Srivastava, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 905 - 915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande C
[Termes IGN] blé (céréale)
[Termes IGN] coefficient de corrélation
[Termes IGN] image radar moirée
[Termes IGN] image Risat-1
[Termes IGN] indice foliaire
[Termes IGN] polarisation
[Termes IGN] régression non linéaire
[Termes IGN] rétrodiffusion
[Termes IGN] séparateur à vaste marge
[Termes IGN] surveillance de la végétationRésumé : (auteur) Leaf Area Index (LAI) is a key parameter to characterize the canopy–atmosphere interface, where most of the energy fluxes exchange. Space-borne satellite images have shown their relevance for various applications including LAI retrieval over large areas. Although optical data have been used for this purpose in previous studies, the constraints to acquire optical data during extreme weather conditions due to the presence of clouds, haze, smoke etc. hinders its use for uninterrupted monitoring. This study aims to analyze the relationships of C-band RISAT-1 hybrid polarized SAR data (σ˚RH and σ˚RV) with wheat LAI. The results have shown the correlation coefficient (|r|) of 0.57 and 0.73 for RH and RV backscatter, respectively, using non-linear regression approach. It is also observed that the accuracy of LAI retrieval has been significantly improved with |r| and RMSE of 0.81 and 0.54 (m2/m2), respectively, by considering both RH and RV backscatter as inputs for support vector machine-based model. Numéro de notice : A2020-341 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10106049.2019.1566404 Date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566404 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95219
in Geocarto international > Vol 35 n° 8 [01/06/2020] . - pp 905 - 915[article]Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data / Dipanwita Haldar in Geocarto international, vol 35 n° 4 ([15/03/2020])
[article]
Titre : Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data Type de document : Article/Communication Auteurs : Dipanwita Haldar, Auteur ; Viral Dave, Auteur ; Arundhati Misra, Auteur ; Bimal Bhattacharya, Auteur Année de publication : 2020 Article en page(s) : pp 364 - 375 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse
[Termes IGN] cultures
[Termes IGN] Gossypium (genre)
[Termes IGN] image Risat-1
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] modèle de simulation
[Termes IGN] polarisation
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétation
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Periodic crop condition monitoring is of prime importance in cotton belt of western India for water stress management. In this article, vegetation water content (VWC) is assessed using Radar Vegetation Index (RVI) derived from the RISAT-1 data during July to September, vegetative to first picking phase, for utilizing its potential for large area cotton condition assessment. The RVI estimation from dual-polarized data has been demonstrated for regional applications. Prediction models of VWC for cotton crop using RVI and in situ ground measurements depicts significant relationship, with R2 varying from 0.5 to 0.6 and RMSE of 0.3–0.7 kg m−2. High correlation exists between RVI with crop age and crop biomass with R2 varying from 0.55 to 0.7, this proves useful for sowing date prediction. The results showed good validation (R2 = 0.8) for operational applications. The estimated VWC was found with 30–35% error above 4 kg m−2 biomasses as compared to 20–25% in lower ranges. Numéro de notice : A2020-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1516249 Date de publication en ligne : 01/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1516249 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95118
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 364 - 375[article]Satellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data / Manali Pal in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Satellite-based probabilistic assessment of soil moisture using C-band quad-polarized RISAT1 data Type de document : Article/Communication Auteurs : Manali Pal, Auteur ; Rajib Maity, Auteur ; Mayank Suman, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 1351 - 1362 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse en composantes principales
[Termes IGN] angle d'incidence
[Termes IGN] bande C
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] humidité du sol
[Termes IGN] image radar moirée
[Termes IGN] image Risat-1
[Termes IGN] modèle d'incertitude
[Termes IGN] polarimétrie radar
[Termes IGN] polarisation
[Termes IGN] teneur en eau liquideRésumé : (Auteur) This paper attempts to probabilistically estimate the surface soil moisture content (SMC) by using the synthetic aperture radar data provided by radar imaging satellite1. The novelty of this paper lies in: 1) developing a combined index to understand the role of all the backscattering coefficients with different polarization and soil texture information in influencing the SMC; 2) using normalized incidence angles, which enables the model to be applicable for different incidence angles; and 3) determination of uncertainty range of the estimated SMC. The dimensionality problem, which is frequently observed in the multivariate analysis, is reduced in the development of the combined index by the use of supervised principal component analysis (SPCA). The SPCA also ensures the maximum attainable association between the developed combined index and surface SMC above wilting point (WP). The association between the combined index and the surface SMC above WP is modeled through joint probability distribution by using the Frank copula. The model is developed and validated with the field soil moisture values over 334 monitoring points within the study area. The outcomes obtained by applying the proposed model indicate an encouraging potential of the model to be applied for bareland and vegetated land ( Numéro de notice : A2017-153 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2623378 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2623378 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84686
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1351 - 1362[article]