Descripteur
Documents disponibles dans cette catégorie (78)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets / Li Geng in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)
[article]
Titre : Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets Type de document : Article/Communication Auteurs : Li Geng, Auteur ; Ke Zhang, Auteur Année de publication : 2023 Article en page(s) : n° 7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] géobalise
[Termes IGN] mobilité urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] TwitterRésumé : (auteur) Urban planners have been long interested in understanding how urban structure and activities are mutually influenced. Human mobility and economic activities naturally drive the formation of road network structure and the accessibility of the latter shapes the patterns of movement flow across urban space. In this paper, we perform an exploratory study on the relationship between the street network structure and the intensity of human movement in urban areas. We focus on two cities and we utilize a dataset of geo-tagged tweets that can form a proxy to urban mobility and the corresponding street networks as obtained from OpenStreetMap. We apply three network centrality measures, including closeness, betweenness and straightness centrality, calculated at a global or local scale, as well as under mixed or individual transportation mode (e.g., driving, biking and walking) with its directional accessibility, to uncover the structural properties of urban street networks. We further design an urban area transition network and apply PageRank to capture the intensity of human mobility. Our correlation analysis indicates different centrality metrics have different levels of correlation with the intensity of human movement. The closeness centrality consistently shows the highest correlation (with a coefficient around 0.6) with human movement intensity when calculated at a global scale, while straightness centrality often shows no correlation at the global scale or weaker correlation ρ≈0.4 at the local scale. The correlation levels further depend on the type of directional accessibility and of various types of transportation modes. Hence, the directionality and transportation mode, largely ignored in the analysis of road networks, are crucial. Furthermore, the strength of the correlation varies in the two cities examined, indicating potential differences in urban spatial structure and human mobility patterns. Numéro de notice : A2023-105 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.3390/ijgi12010007 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.3390/ijgi12010007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102433
in ISPRS International journal of geo-information > vol 12 n° 1 (January 2023) . - n° 7[article]An analysis of twitter as a relevant human mobility proxy / Fernando Terroso-Saenz in Geoinformatica, vol 26 n° 4 (October 2022)
[article]
Titre : An analysis of twitter as a relevant human mobility proxy Type de document : Article/Communication Auteurs : Fernando Terroso-Saenz, Auteur ; Andres Muñoz, Auteur ; Francisco Arcas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 677 - 706 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] Espagne
[Termes IGN] géobalise
[Termes IGN] maladie virale
[Termes IGN] mobilité territoriale
[Termes IGN] TwitterRésumé : (auteur) During the last years, the analysis of spatio-temporal data extracted from Online Social Networks (OSNs) has become a prominent course of action within the human-mobility mining discipline. Due to the noisy and sparse nature of these data, an important effort has been done on validating these platforms as suitable mobility proxies. However, such a validation has been usually based on the computation of certain features from the raw spatio-temporal trajectories extracted from OSN documents. Hence, there is a scarcity of validation studies that evaluate whether geo-tagged OSN data are able to measure the evolution of the mobility in a region at multiple spatial scales. For that reason, this work proposes a comprehensive comparison of a nation-scale Twitter (TWT) dataset and an official mobility survey from the Spanish National Institute of Statistics. The target time period covers a three-month interval during which Spain was heavily affected by the COVID-19 pandemic. Both feeds have been compared in this context by considering different mobility-related features and spatial scales. The results show that TWT could capture only a limited number features of the latent mobility behaviour of Spain during the study period. Numéro de notice : A2022-866 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00460-z Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1007/s10707-021-00460-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102159
in Geoinformatica > vol 26 n° 4 (October 2022) . - pp 677 - 706[article]Predicting the variability in pedestrian travel rates and times using crowdsourced GPS data / Michael J. Campbell in Computers, Environment and Urban Systems, vol 97 (October 2022)
[article]
Titre : Predicting the variability in pedestrian travel rates and times using crowdsourced GPS data Type de document : Article/Communication Auteurs : Michael J. Campbell, Auteur ; Philip E. Dennison, Auteur ; Matthew Thompson, Auteur Année de publication : 2022 Article en page(s) : n° 101866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] base de données localisées
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] chemin le moins coûteux, algorithme du
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] durée de trajet
[Termes IGN] mobilité urbaine
[Termes IGN] navigation pédestre
[Termes IGN] pente
[Termes IGN] planification urbaine
[Termes IGN] trace GPS
[Termes IGN] Utah (Etas-Unis)Résumé : (auteur) Accurately predicting pedestrian travel times is critically valuable in emergency response, wildland firefighting, disaster management, law enforcement, and urban planning. However, the relationship between pedestrian movement and landscape conditions is highly variable between individuals, making it difficult to estimate how long it will take broad populations to get from one location to another on foot. Although functions exist for predicting travel rates, they typically oversimplify the inherent variability of pedestrian travel by assuming the effects of landscapes on movement are universal. In this study, we present an approach for predicting the variability in pedestrian travel rates and times using a large, crowdsourced database of GPS tracks. Acquired from the outdoor recreation website AllTrails, these tracks represent nearly 2000 hikes on a diverse range of trails in Utah and California, USA. We model travel rates as a function of the slope of the terrain by generating a series of non-linear percentile models from the 2.5 th to the 97.5 th by 2.5 percentiles. The 50 th percentile model, representing the hiking speed of the typical individual, demonstrates marked improvement over existing slope-travel rate functions when compared to an independent test dataset. Our results demonstrate novel capacity to estimate travel time variability, with modeled percentiles being able to predict actual percentiles with less than 10% error. Travel rate functions can also be applied to least cost path analysis to provide variability in travel times. Numéro de notice : A2022-599 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.compenvurbsys.2022.101866 Date de publication en ligne : 20/08/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101866 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101452
in Computers, Environment and Urban Systems > vol 97 (October 2022) . - n° 101866[article]HiPerMovelets: high-performance movelet extraction for trajectory classification / Tarlis Tortelli Portela in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
[article]
Titre : HiPerMovelets: high-performance movelet extraction for trajectory classification Type de document : Article/Communication Auteurs : Tarlis Tortelli Portela, Auteur ; Jonata Tyska Carvalho, Auteur ; Vania Bogorny, Auteur Année de publication : 2022 Article en page(s) : pp 1012 - 1036 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification
[Termes IGN] exploration de données géographiques
[Termes IGN] jeu de données localisées
[Termes IGN] trace numérique
[Termes IGN] trajet (mobilité)Résumé : (auteur) In the last decade, trajectory classification has received significant attention. The vast amount of data generated on social media, the use of sensor networks, IOT devices and other Internet-enabled sources allowed the semantic enrichment of mobility data, making the classification task more challenging. Existing trajectory classification methods have mainly considered space, time and numerical data, ignoring the semantic dimensions. Only recently proposed methods as Movelets and MASTERMovelets can handle all types of dimensions. MASTERMovelets is the only method that automatically discovers the best dimension combination and subtrajectory size for trajectory classification. However, although it outperformed the state-of-the-art in terms of accuracy, MASTERMovelets is computationally expensive and results in a high dimensionality problem, which makes it unfeasible for most real trajectory datasets that contain a big volume of data. To overcome this problem and enable the application of the movelets approach on large datasets, in this paper we propose a new high-performance method for extracting movelets and classifying trajectories, called HiPerMovelets (High-performance Movelets). Experimental results show that HiPerMovelets is 10 times faster than MASTERMovelets, reduces the high-dimensionality problem, is more scalable, and presents a high classification accuracy in all evaluated datasets with both raw and semantic trajectories. Numéro de notice : A2022-332 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2021.2018593 Date de publication en ligne : 03/01/2022 En ligne : https://doi.org/10.1080/13658816.2021.2018593 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100608
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 1012 - 1036[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022051 SL Revue Centre de documentation Revues en salle Disponible Discovering transition patterns among OpenStreetMap feature classes based on the Louvain method / Yijiang Zhao in Transactions in GIS, vol 26 n° 1 (February 2022)
[article]
Titre : Discovering transition patterns among OpenStreetMap feature classes based on the Louvain method Type de document : Article/Communication Auteurs : Yijiang Zhao, Auteur ; Wentao Yang, Auteur ; Yizhi Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 236 - 258 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] Açores, archipel des
[Termes IGN] algorithme glouton
[Termes IGN] données localisées des bénévoles
[Termes IGN] étiquette
[Termes IGN] géobalise
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routierRésumé : (auteur) Numerous studies have shown that OpenStreetMap (OSM) data can achieve high positional quality. However, the thematic attributes of OSM objects can be modified several times, which has a large impact on semantic heterogeneity. Identifying transition patterns within OSM feature classes is an important preliminary step for the tag recommendation algorithm, which can reduce the number of modifications and enhance the efficiency of OSM data updates. In this article, we propose an approach for discovering transition patterns among OSM feature classes. We first produced the transition matrix of feature classes and then developed a graph. Next, the Louvain method for community detection was utilized to cluster the feature classes. OSM data from Indiana, USA, and the Azores, Portugal, were used for our experiments. Some transition patterns were discovered: (1) many feature classes with the most transitions are the same in both datasets and most transitions occur in road-related feature classes; (2) people tend to tag general classes if they are unsure of the specific classes of tagged objects; and (3) most class transitions occurred as a result of volunteers improving the specificity and precision of feature classes. Moreover, consistently confusing concept pairs were identified. Numéro de notice : A2022-178 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12843 Date de publication en ligne : 08/10/2021 En ligne : https://doi.org/10.1111/tgis.12843 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99835
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 236 - 258[article]GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)PermalinkLearning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)PermalinkExploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)PermalinkContext-aware similarity of GPS trajectories / Radu Mariescu-Istodor in Journal of location-based services, vol 14 n° 4 ([01/11/2020])PermalinkGeoNat v1.0: A dataset for natural feature mapping with artificial intelligence and supervised learning / Samantha T. Arundel in Transactions in GIS, Vol 24 n° 3 (June 2020)PermalinkTraffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)PermalinkA global analysis of cities’ geosocial temporal signatures for points of interest hours of operation / Kevin Sparks in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)PermalinkUber movement data: a proxy for average one-way commuting times by car / Yeran Sun in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)PermalinkAnalyse spatio-temporelle des mobilités de randonneurs dans le PNR du Massif des Bauges / Colin Kerouanton (2020)PermalinkPotential of crowdsourced traces for detecting updates in authoritative geographic data / Stefan Ivanovic (2020)Permalink