Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > segmentation > segmentation sémantique
segmentation sémantiqueSynonyme(s)étiquetage sémantique étiquetage de données |
Documents disponibles dans cette catégorie (237)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images / Ziyao Xing in Sustainable Cities and Society, vol 92 (May 2023)
[article]
Titre : Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images Type de document : Article/Communication Auteurs : Ziyao Xing, Auteur ; Shuai Yang, Auteur ; Xuli Zan, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104467 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] gestion des risques
[Termes IGN] image Streetview
[Termes IGN] inondation
[Termes IGN] milieu urbain
[Termes IGN] planification urbaine
[Termes IGN] Quickbird
[Termes IGN] segmentation sémantique
[Termes IGN] vulnérabilitéRésumé : (auteur) Urban flood risk management requires an extensive investigation of the vulnerability characteristics of buildings. Large-scale field surveys usually cost a lot of time and money, while satellite remote sensing and street view images can provide information on the tops and facades of buildings respectively. Thereupon, this paper develops a building vulnerability assessment framework using remote sensing and street view features. Specifically, a UNet-based semantic segmentation model, FSA-UNet (Fusion-Self-Attention-UNet) is proposed to integrate remote sensing and street view features and the vulnerability information contained in the images is fully exploited. And the building vulnerability index is generated to provide the spatial distribution characteristics of urban building vulnerability. The experiment shows that the mIoU of the proposed model can reach 82% for building vulnerability classification in Hefei, China, which is more accurate than the traditional semantic segmentation models. The results indicate that the integration of street view and remote sensing image features can improve the ability of building vulnerability assessment, and the model proposed in this study can better capture the correlation features of multi-angle images through the self-attention mechanism and combines hierarchy features and edge information to improve the classification effect. This study can support for disaster management and urban planning. Numéro de notice : A2023-152 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2023.104467 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104467 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102826
in Sustainable Cities and Society > vol 92 (May 2023) . - n° 104467[article]Mapping the walk: A scalable computer vision approach for generating sidewalk network datasets from aerial imagery / Maryam Hosseini in Computers, Environment and Urban Systems, vol 101 (April 2023)
[article]
Titre : Mapping the walk: A scalable computer vision approach for generating sidewalk network datasets from aerial imagery Type de document : Article/Communication Auteurs : Maryam Hosseini, Auteur ; Andres Sevtsuk, Auteur ; Fabio Miranda, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection d'objet
[Termes IGN] Etats-Unis
[Termes IGN] image aérienne
[Termes IGN] navigation pédestre
[Termes IGN] segmentation sémantique
[Termes IGN] système d'information géographique
[Termes IGN] trottoir
[Termes IGN] vision par ordinateurRésumé : (auteur) While cities around the world are increasingly promoting streets and public spaces that prioritize pedestrians over vehicles, significant data gaps have made pedestrian mapping, analysis, and modeling challenging to carry out. Most cities, even in industrialized economies, still lack information about the location and connectivity of their sidewalks, making it difficult to implement research on pedestrian infrastructure and holding the technology industry back from developing accurate, location-based Apps for pedestrians, wheelchair users, street vendors, and other sidewalk users. To address this gap, we have designed and implemented an end-to-end open-source tool— Tile2Net —for extracting sidewalk, crosswalk, and footpath polygons from orthorectified aerial imagery using semantic segmentation. The segmentation model, trained on aerial imagery from Cambridge, MA, Washington DC, and New York City, offers the first open-source scene classification model for pedestrian infrastructure from sub-meter resolution aerial tiles, which can be used to generate planimetric sidewalk data in North American cities. Tile2Net also generates pedestrian networks from the resulting polygons, which can be used to prepare datasets for pedestrian routing applications. The work offers a low-cost and scalable data collection methodology for systematically generating sidewalk network datasets, where orthorectified aerial imagery is available, contributing to over-due efforts to equalize data opportunities for pedestrians, particularly in cities that lack the resources necessary to collect such data using more conventional methods. Numéro de notice : A2023-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2023.101950 Date de publication en ligne : 22/02/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2023.101950 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102961
in Computers, Environment and Urban Systems > vol 101 (April 2023) . - n° 101950[article]Towards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
[article]
Titre : Towards global scale segmentation with OpenStreetMap and remote sensing Type de document : Article/Communication Auteurs : Munazza Usmani, Auteur ; Maurizio Napolitano, Auteur ; Francesca Bovolo, Auteur Année de publication : 2023 Article en page(s) : n° 100031 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Land Use Land Cover (LULC) segmentation is a famous application of remote sensing in an urban environment. Up-to-date and complete data are of major importance in this field. Although with some success, pixel-based segmentation remains challenging because of class variability. Due to the increasing popularity of crowd-sourcing projects, like OpenStreetMap, the need for user-generated content has also increased, providing a new prospect for LULC segmentation. We propose a deep-learning approach to segment objects in high-resolution imagery by using semantic crowdsource information. Due to satellite imagery and crowdsource database complexity, deep learning frameworks perform a significant role. This integration reduces computation and labor costs. Our methods are based on a fully convolutional neural network (CNN) that has been adapted for multi-source data processing. We discuss the use of data augmentation techniques and improvements to the training pipeline. We applied semantic (U-Net) and instance segmentation (Mask R-CNN) methods and, Mask R–CNN showed a significantly higher segmentation accuracy from both qualitative and quantitative viewpoints. The conducted methods reach 91% and 96% overall accuracy in building segmentation and 90% in road segmentation, demonstrating OSM and remote sensing complementarity and potential for city sensing applications. Numéro de notice : A2023-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100031 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100031 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102807
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100031[article]Comparative analysis of different CNN models for building segmentation from satellite and UAV images / Batuhan Sariturk in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 2 (February 2023)
[article]
Titre : Comparative analysis of different CNN models for building segmentation from satellite and UAV images Type de document : Article/Communication Auteurs : Batuhan Sariturk, Auteur ; Damla Kumbasar, Auteur ; Dursun Zafer Seker, Auteur Année de publication : 2023 Article en page(s) : pp 97 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] bati
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image captée par drone
[Termes IGN] image satellite
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Building segmentation has numerous application areas such as urban planning and disaster management. In this study, 12 CNN models (U-Net, FPN, and LinkNet using EfficientNet-B5 backbone, U-Net, SegNet, FCN, and six Residual U-Net models) were generated and used for building segmentation. Inria Aerial Image Labeling Data Set was used to train models, and three data sets (Inria Aerial Image Labeling Data Set, Massachusetts Buildings Data Set, and Syedra Archaeological Site Data Set) were used to evaluate trained models. On the Inria test set, Residual-2 U-Net has the highest F1 and Intersection over Union (IoU) scores with 0.824 and 0.722, respectively. On the Syedra test set, LinkNet-EfficientNet-B5 has F1 and IoU scores of 0.336 and 0.246. On the Massachusetts test set, Residual-4 U-Net has F1 and IoU scores of 0.394 and 0.259. It has been observed that, for all sets, at least two of the top three models used residual connections. Therefore, for this study, residual connections are more successful than conventional convolutional layers. Numéro de notice : A2023-143 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00084R2 Date de publication en ligne : 01/02/2023 En ligne : https://doi.org/10.14358/PERS.22-00084R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102718
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 2 (February 2023) . - pp 97 - 105[article]Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models Type de document : Article/Communication Auteurs : Xikun Hu, Auteur ; Puzhao Zhang, Auteur ; Yifang Ban, Auteur Année de publication : 2023 Article en page(s) : pp 228 - 240 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dommage
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] jeu de données localisées
[Termes IGN] segmentation sémantique
[Termes IGN] surveillance forestière
[Termes IGN] zone sinistréeRésumé : (auteur) Nowadays Earth observation satellites provide forest fire authorities and resource managers with spatial and comprehensive information for fire stabilization and recovery. Burn severity mapping is typically performed by classifying bi-temporal indices (e.g., dNBR, and RdNBR) using thresholds derived from parametric models incorporating field-based measurements. Analysts are currently expending considerable manual effort using prior knowledge and visual inspection to determine burn severity thresholds. In this study, we aim to employ highly automated approaches to provide spatially explicit damage level estimates. We first reorganize a large-scale Landsat-based bi-temporal burn severity assessment dataset (Landsat-BSA) by visual data cleaning based on annotated MTBS data (approximately 1000 major fire events in the United States). Then we apply state-of-the-art deep learning (DL) based methods to map burn severity based on the Landsat-BSA dataset. Experimental results emphasize that multi-class semantic segmentation algorithms can approximate the threshold-based techniques used extensively for burn severity classification. UNet-like models outperform other region-based CNN and Transformer-based models and achieve accurate pixel-wise classification results. Combined with the online hard example mining algorithm to reduce class imbalance issue, Attention UNet achieves the highest mIoU (0.78) and the highest Kappa coefficient close to 0.90. The bi-temporal inputs with ancillary spectral indices work much better than the uni-temporal multispectral inputs. The restructured dataset will be publicly available and create opportunities for further advances in remote sensing and wildfire communities. Numéro de notice : A2023-122 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.026 Date de publication en ligne : 11/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102498
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 228 - 240[article]PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)PermalinkForest road extraction from orthophoto images by convolutional neural networks / Erhan Çalişkan in Geocarto international, vol 38 n° inconnu ([01/01/2023])PermalinkA geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)PermalinkGeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates / Valerio Marsocci (2023)PermalinkA hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)PermalinkLarge-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach / Shenglong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)PermalinkPrototype-guided multitask adversarial network for cross-domain LiDAR point clouds semantic segmentation / Zhimin Yuan in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)PermalinkPermalinkAutomatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)PermalinkInstance segmentation of standing dead trees in dense forest from aerial imagery using deep learning / Aboubakar Sani-Mohammed in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)Permalink