Descripteur
Documents disponibles dans cette catégorie (7)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 12 (December 2021)
[article]
Titre : Automatic registration of mobile mapping system Lidar points and panoramic-image sequences by relative orientation model Type de document : Article/Communication Auteurs : Ningning Zhu, Auteur ; Bisheng Yang, Auteur ; Zhen Dong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 913 - 922 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] orientation relative
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] superposition de données
[Termes IGN] SURF (algorithme)Résumé : (Auteur) To register mobile mapping system (MMS) lidar points and panoramic-image sequences, a relative orientation model of panoramic images (PROM) is proposed. The PROM is suitable for cases in which attitude or orientation parameters are unknown in the panoramic-image sequence. First, feature points are extracted and matched from panoramic-image pairs using the SURF algorithm. Second, these matched feature points are used to solve the relative attitude parameters in the PROM. Then, combining the PROM with the absolute position and attitude parameters of the initial panoramic image, the MMS lidar points and panoramic-image sequence are registered. Finally, the registration accuracy of the PROM method is assessed using corresponding points manually selected from the MMS lidar points and panoramic-image sequence. The results show that three types of MMS data sources are registered accurately based on the proposed registration method. Our method transforms the registration of panoramic images and lidar points into image feature-point matching, which is suitable for diverse road scenes compared with existing methods. Numéro de notice : A2021-899 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00006R2 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.14358/PERS.21-00006R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99298
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 12 (December 2021) . - pp 913 - 922[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021121 SL Revue Centre de documentation Revues en salle Disponible Research on feature extraction method of indoor visual positioning image based on area division of foreground and background / Ping Zheng in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
[article]
Titre : Research on feature extraction method of indoor visual positioning image based on area division of foreground and background Type de document : Article/Communication Auteurs : Ping Zheng, Auteur ; Danyang Qin, Auteur ; Bing Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 402 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] logiciel libre
[Termes IGN] positionnement en intérieur
[Termes IGN] Ransac (algorithme)
[Termes IGN] SIFT (algorithme)
[Termes IGN] SURF (algorithme)Résumé : (auteur) In the process of indoor visual positioning and navigation, difficult points often exist in corridors, stairwells, and other scenes that contain large areas of white walls, strong consistent background, and sparse feature points. Aiming at the problem of positioning and navigation in the real physical world where the walls with sparse feature points are difficult to be filled with pictures, this paper designs a feature extraction method, ARAC (Adaptive Region Adjustment based on Consistency) using Free and Open-Source Software and tools. It divides the image into foreground and background and extracts their features respectively, to achieve not only retain positioning information but also focus more energy on the foreground area which is favourable for navigation. In the test phase, under the combined conditions of illumination, scale and affine changes, the feature matching maps by the feature extraction algorithm proposed in this paper are compared with those by SIFT and SURF. Experiments show that the number of correctly matched feature pairs obtained by ARAC is better than SIFT and SURF, and whose time of feature extraction and matching is comparable to SURF, which verifies the accuracy and efficiency of the ARAC feature extraction method. Numéro de notice : A2021-518 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi10060402 Date de publication en ligne : 11/06/2021 En ligne : https://doi.org/10.3390/ijgi10060402 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97940
in ISPRS International journal of geo-information > vol 10 n° 6 (June 2021) . - n° 402[article]Visual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
[article]
Titre : Visual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors Type de document : Article/Communication Auteurs : Longyu Zhang, Auteur ; Hao Xia, Auteur ; Qingjun Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 195 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par nuées dynamiques
[Termes IGN] estimation de pose
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] modélisation 3D
[Termes IGN] positionnement en intérieur
[Termes IGN] Ransac (algorithme)
[Termes IGN] scène intérieure
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] SURF (algorithme)
[Termes IGN] téléphone intelligent
[Termes IGN] vision par ordinateurRésumé : (auteur) Positioning information has become one of the most important information for processing and displaying on smart mobile devices. In this paper, we propose a visual positioning method using RGB-D image on smart mobile devices. Firstly, the pose of each image in the training set is calculated through feature extraction and description, image registration, and pose map optimization. Then, in the image retrieval stage, the training set and the query set are clustered to generate the vector of local aggregated descriptors (VLAD) description vector. In order to overcome the problem that the description vector loses the image color information and improve the retrieval accuracy under different lighting conditions, the opponent color information and depth information are added to the description vector for retrieval. Finally, using the point cloud corresponding to the retrieval result image and its pose, the pose of the retrieved image is calculated by perspective-n-point (PnP) method. The results of indoor scene positioning under different illumination conditions show that the proposed method not only improves the positioning accuracy compared with the original VLAD and ORB-SLAM2, but also has high computational efficiency. Numéro de notice : A2021-481 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10040195 Date de publication en ligne : 24/03/2021 En ligne : https://doi.org/10.3390/ijgi10040195 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97425
in ISPRS International journal of geo-information > vol 10 n° 4 (April 2021) . - n° 195[article]Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / Roholah Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation Type de document : Article/Communication Auteurs : Roholah Yazdan, Auteur ; Masood Varshosaz, Auteur Année de publication : 2021 Article en page(s) : pp 18 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'images
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] corrélation croisée normalisée
[Termes IGN] couple stéréoscopique
[Termes IGN] détection automatique
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconnaissance d'objets
[Termes IGN] segmentation d'image
[Termes IGN] SIFT (algorithme)
[Termes IGN] signalisation routière
[Termes IGN] SURF (algorithme)
[Termes IGN] Téhéran
[Termes IGN] transformation de Hough
[Termes IGN] zone urbaineRésumé : (auteur) Automatic detection and recognition of traffic signs have many applications. However, some problems can affect the accuracy of the existing algorithms, such as changes in environmental light conditions, shadows, the presence of objects of the same colour, significant changes in scale and rotation, as well as obstacles in front of the traffic signs. To overcome these difficulties, a reference image database is usually used that includes different modes of appearing the traffic signs in the images. In order to overcome the effects of scale and rotation, in this paper a new method is presented in which only one reference image is needed for each sign to recognise the traffic sign in an image. In the proposed method, imaging is done in stereo. Using the captured image pair, a virtual image is generated which is then used to recognise the sign. As a result, the recognition is carried out with a minimum number of reference images. Experiments show that the proposed algorithm significantly improves recognition results. The traffic signs are recognised with 93.1% accuracy that enjoys a 4.9% improvement over traditional methods. Numéro de notice : A2021-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.003 Date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96304
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 18 - 35[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt An Illumination Insensitive descriptor combining the CSLBP features for street view images in augmented reality: experimental studies / Zejun Xiang in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
[article]
Titre : An Illumination Insensitive descriptor combining the CSLBP features for street view images in augmented reality: experimental studies Type de document : Article/Communication Auteurs : Zejun Xiang, Auteur ; Ronghua Yang, Auteur ; Chang Deng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 33 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] éclairage
[Termes IGN] intensité lumineuse
[Termes IGN] motif binaire local
[Termes IGN] réalité augmentée
[Termes IGN] scène urbaine
[Termes IGN] SIFT (algorithme)
[Termes IGN] SURF (algorithme)Résumé : (auteur) Numéro de notice : A2020-312 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9060362 Date de publication en ligne : 01/06/2020 En ligne : https://doi.org/10.3390/ijgi9060362 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95166
in ISPRS International journal of geo-information > vol 9 n° 6 (June 2020) . - 33 p.[article]PermalinkPermalink