Journal of Forestry Research . vol 33 n° 2Paru le : 01/04/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierEstimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau / Changkun Ma in Journal of Forestry Research, vol 33 n° 2 (April 2022)
[article]
Titre : Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau Type de document : Article/Communication Auteurs : Changkun Ma, Auteur ; Yi Luo, Auteur ; Mingan Shao, Auteur ; Xiaoxu Jia, Auteur Année de publication : 2022 Article en page(s) : pp 529 - 542 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] canopée
[Termes IGN] capacité de stockage
[Termes IGN] Chine
[Termes IGN] pluie
[Termes IGN] régression multiple
[Termes IGN] Robinia pseudoacacia
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] zone semi-aride
[Vedettes matières IGN] ForesterieMots-clés libres : Rainfall interception loss Résumé : (auteur) Understanding the interaction between canopy structure and the parameters of interception loss is essential in predicting the variations in partitioning rainfall and water resources as affected by changes in canopy structure and in implementing water-based management in semiarid forest plantations. In this study, seasonal variations in rainfall interception loss and canopy storage capacity as driven by canopy structure were predicted and the linkages were tested using seasonal filed measurements. The study was conducted in nine 50 m × 50 m Robinia pseudoacacia plots in the semiarid region of China’s Loess Plateau. Gross rainfall, throughfall and stemflow were measured in seasons with and without leaves in 2015 and 2016. Results show that measured average interception loss for the nine plots were 17.9% and 9.4% of gross rainfall during periods with leaves (the growing season) and without leaves, respectively. Average canopy storage capacity estimated using an indirect method was 1.3 mm in the growing season and 0.2 mm in the leafless season. Correlations of relative interception loss and canopy storage capacity to canopy variables were highest for leaf/wood area index (LAI/WAI) and canopy cover, followed by bark area, basal area, tree height and stand density. Combined canopy cover, leaf/wood area index and bark area multiple regression models of interception loss and canopy storage capacity were established for the growing season and in the leafless season in 2015. It explained 97% and 96% of the variations in relative interception loss during seasons with and without leaves, respectively. It also explained 98% and 99% of the variations in canopy storage capacity during seasons with and without leaves, respectively. The empirical regression models were validated using field data collected in 2016. The models satisfactorily predicted relative interception loss and canopy storage capacity during seasons with and without leaves. This study provides greater understanding about the effects of changes in tree canopy structure (e.g., dieback or mortality) on hydrological processes. Numéro de notice : A2022-334 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s11676-021-01324-w Date de publication en ligne : 06/06/2021 En ligne : https://doi.org/10.1007/s11676-021-01324-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100668
in Journal of Forestry Research > vol 33 n° 2 (April 2022) . - pp 529 - 542[article]Problems with models assessing influences of tree size and inter-tree competitive processes on individual tree growth: a cautionary tale / P.W. West in Journal of Forestry Research, vol 33 n° 2 (April 2022)
[article]
Titre : Problems with models assessing influences of tree size and inter-tree competitive processes on individual tree growth: a cautionary tale Type de document : Article/Communication Auteurs : P.W. West, Auteur ; D.A. Ratkowsky, Auteur Année de publication : 2022 Article en page(s) : pp 565 - 577 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] arbre (flore)
[Termes IGN] Australie
[Termes IGN] croissance végétale
[Termes IGN] Eucalyptus pilularis
[Termes IGN] forêt équienne
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de croissance végétale
[Termes IGN] régression non linéaire
[Termes IGN] surface terrière
[Vedettes matières IGN] ForesterieRésumé : (auteur) In forest growing at any one site, the growth rate of an individual tree is determined principally by its size, which reflects its metabolic capacity, and by competition from neighboring trees. Competitive effects of a tree may be proportional to its size; such competition is termed ‘symmetric’ and generally involves competition below ground for nutrients and water from the soil. Competition may also be ‘asymmetric’, where its effects are disproportionate to the size of the tree; this generally involves competition above ground for sunlight, when larger trees shade smaller, but the reverse cannot occur. This work examines three model systems often seen as exemplars relating individual tree growth rates to tree size and both competitive processes. Data of tree stem basal area growth rates in plots of even-aged, monoculture forest of blackbutt (Eucalyptus pilularis Smith) growing in sub-tropical eastern Australia were used to test these systems. It was found that none could distinguish between size and competitive effects at any time in any one stand and, thus, allow quantification of the contribution of each to explaining tree growth rates. They were prevented from doing so both by collinearity between the terms used to describe each of the effects and technical problems involved in the use of nonlinear least-squares regression to fit the models to any one data set. It is concluded that quite new approaches need to be devised if the effects on tree growth of tree size and competitive processes are to be quantified and modelled successfully. Numéro de notice : A2022-335 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s11676-021-01395-9 Date de publication en ligne : 04/10/2021 En ligne : https://doi.org/10.1007/s11676-021-01395-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100673
in Journal of Forestry Research > vol 33 n° 2 (April 2022) . - pp 565 - 577[article]