Remote sensing . vol 14 n° 9Paru le : 01/05/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA continuous change tracker model for remote sensing time series reconstruction / Yangjian Zhang in Remote sensing, vol 14 n° 9 (May-1 2022)
[article]
Titre : A continuous change tracker model for remote sensing time series reconstruction Type de document : Article/Communication Auteurs : Yangjian Zhang, Auteur ; Li Wang, Auteur ; Yuanhuizi He, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse harmonique
[Termes IGN] compression d'image
[Termes IGN] détection de changement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] production primaire brute
[Termes IGN] reconstruction d'image
[Termes IGN] réflectance de surface
[Termes IGN] série temporelleRésumé : (auteur) It is hard for current time series reconstruction methods to achieve the balance of high-precision time series reconstruction and explanation of the model mechanism. The goal of this paper is to improve the reconstruction accuracy with a well-explained time series model. Thus, we developed a function-based model, the CCTM (Continuous Change Tracker Model) model, that can achieve high precision in time series reconstruction by tracking the time series variation rate. The goal of this paper is to provide a new solution for high-precision time series reconstruction and related applications. To test the reconstruction effects, the model was applied to four types of datasets: normalized difference vegetation index (NDVI), gross primary productivity (GPP), leaf area index (LAI), and MODIS surface reflectance (MSR). Several new observations are as follows. First, the CCTM model is well explained and based on the second-order derivative theorem, which divides the yearly time series into four variation types including uniform variations, decelerated variations, accelerated variations, and short-periodical variations, and each variation type is represented by a designed function. Second, the CCTM model provides much better reconstruction results than the Harmonic model on the NDVI, GPP, MSR, and LAI datasets for the seasonal segment reconstruction. The combined use of the Savitzky–Golay filter and the CCTM model is better than the combinations of the Savitzky–Golay filter with other models. Third, the Harmonic model has the best trend-fitting ability on the yearly time series dataset, with the highest R-Square and the lowest RMSE among the four function fitting models. However, with seasonal piecewise fitting, the four models all achieved high accuracy, and the CCTM performs the best. Fourth, the CCTM model should also be applied to time series image compression, two compression patterns with 24 coefficients and 6 coefficients respectively are proposed. The daily MSR dataset can achieve a compression ratio of 15 by using the 6-coefficients method. Finally, the CCTM model also has the potential to be applied to change detection, trend analysis, and phenology and seasonal characteristics extractions. Numéro de notice : A2022-384 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14092280 Date de publication en ligne : 09/05/2022 En ligne : https://doi.org/10.3390/rs14092280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100662
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2280[article]A context feature enhancement network for building extraction from high-resolution remote sensing imagery / Jinzhi Chen in Remote sensing, vol 14 n° 9 (May-1 2022)
[article]
Titre : A context feature enhancement network for building extraction from high-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Jinzhi Chen, Auteur ; Dejun Zhang, Auteur ; Yiqi Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] structure-from-motionRésumé : (auteur) The complexity and diversity of buildings make it challenging to extract low-level and high-level features with strong feature representation by using deep neural networks in building extraction tasks. Meanwhile, deep neural network-based methods have many network parameters, which take up a lot of memory and time in training and testing. We propose a novel fully convolutional neural network called the Context Feature Enhancement Network (CFENet) to address these issues. CFENet comprises three modules: the spatial fusion module, the focus enhancement module, and the feature decoder module. First, the spatial fusion module aggregates the spatial information of low-level features to obtain buildings’ outline and edge information. Secondly, the focus enhancement module fully aggregates the semantic information of high-level features to filter the information of building-related attribute categories. Finally, the feature decoder module decodes the output of the above two modules to segment the buildings more accurately. In a series of experiments on the WHU Building Dataset and the Massachusetts Building Dataset, our CFENet balances efficiency and accuracy compared to the other four methods we compared, and achieves optimality on all five evaluation metrics: PA, PC, F1, IoU, and FWIoU. This indicates that CFENet can effectively enhance and fuse buildings’ low-level and high-level features, improving building extraction accuracy. Numéro de notice : A2022-385 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14092276 Date de publication en ligne : 09/05/2022 En ligne : https://doi.org/10.3390/rs14092276 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100663
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2276[article]Adaptive Kalman filter for real-time precise orbit determination of low earth orbit satellites based on pseudorange and epoch-differenced carrier-phase measurements / Min Li in Remote sensing, vol 14 n° 9 (May-1 2022)
[article]
Titre : Adaptive Kalman filter for real-time precise orbit determination of low earth orbit satellites based on pseudorange and epoch-differenced carrier-phase measurements Type de document : Article/Communication Auteurs : Min Li, Auteur ; Tianhe Xu, Auteur ; Yali Shi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2273 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] ambiguïté entière
[Termes IGN] filtre adaptatif
[Termes IGN] filtre de Kalman
[Termes IGN] matrice de covariance
[Termes IGN] mesurage de phase
[Termes IGN] orbite basse
[Termes IGN] orbitographie
[Termes IGN] orbitographie par GNSS
[Termes IGN] temps réelRésumé : (auteur) Real-time precise orbit determination (POD) of low earth orbiters (LEOs) is crucial for orbit maintenance as well as autonomous operation for space missions. The Global Positioning System (GPS) has become the dominant technique for real-time precise orbit determination (POD) of LEOs. However, the observation conditions of near-earth space are more critical than those on the ground. Real-time POD accuracy can be seriously affected when the observation environment suffers from strong space events, i.e., a heavy solar storm. In this study, we proposed a reliable adaptive Kalman filter based on pseudorange and epoch-differenced carrier-phase measurements. This approach uses the epoch-differenced carrier phase to eliminate the ambiguities and thus reduces the significant number of unknown parameters. Real calculations demonstrate that four to five observed GPS satellites is sufficient to solve reliable position parameters. Furthermore, with accurate pseudorange and epoch-differenced carrier-phase-based reference orbits, orbital dynamic disturbance can be detected precisely and reliably with an adaptive Kalman filter. Analyses of Swarm-A POD show that sub-meter level real-time orbit solutions can be obtained when the observation conditions are good. For poor observation conditions such as the GRACE-A satellite on 8 September 2017, when fewer than five GPS satellites were observed for 14% of the observation time, 1–2 m orbital accuracy can still be achieved with the proposed approach. Numéro de notice : A2022-386 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14092273 Date de publication en ligne : 08/05/2022 En ligne : https://doi.org/10.3390/rs14092273 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100665
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2273[article]City3D: Large-scale building reconstruction from airborne LiDAR point clouds / Jin Huang in Remote sensing, vol 14 n° 9 (May-1 2022)
[article]
Titre : City3D: Large-scale building reconstruction from airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Jin Huang, Auteur ; Jantien E. Stoter, Auteur ; Ravi Peters, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2254 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] mur
[Termes IGN] polygonale
[Termes IGN] primitive géométrique
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] Triangular Regular Network
[Termes IGN] triangulation de DelaunayRésumé : (auteur) We present a fully automatic approach for reconstructing compact 3D building models from large-scale airborne point clouds. A major challenge of urban reconstruction from airborne LiDAR point clouds lies in that the vertical walls are typically missing. Based on the observation that urban buildings typically consist of planar roofs connected with vertical walls to the ground, we propose an approach to infer the vertical walls directly from the data. With the planar segments of both roofs and walls, we hypothesize the faces of the building surface, and the final model is obtained by using an extended hypothesis-and-selection-based polygonal surface reconstruction framework. Specifically, we introduce a new energy term to encourage roof preferences and two additional hard constraints into the optimization step to ensure correct topology and enhance detail recovery. Experiments on various large-scale airborne LiDAR point clouds have demonstrated that the method is superior to the state-of-the-art methods in terms of reconstruction accuracy and robustness. In addition, we have generated a new dataset with our method consisting of the point clouds and 3D models of 20k real-world buildings. We believe this dataset can stimulate research in urban reconstruction from airborne LiDAR point clouds and the use of 3D city models in urban applications. Numéro de notice : A2022-387 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.3390/rs14092254 Date de publication en ligne : 07/05/2022 En ligne : https://doi.org/10.3390/rs14092254 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100667
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2254[article]