[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSuspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms Type de document : Article/Communication Auteurs : Marzieh Fadaee, Auteur ; Amin Mahdavi-Meymand, Auteur ; Mohammad Zounemat-Kermani, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 961 - 977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] algorithme génétique
[Termes IGN] analyse comparative
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] Inférence floue
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificiel
[Termes IGN] sédimentRésumé : (auteur) The present study investigates the capability of two metaheuristic optimization approaches, namely the Butterfly Optimization Algorithm (BOA) and the Genetic Algorithm (GA), integrated with machine learning models in Suspended Sediment Load (SSL) prediction. The Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) are applied as the predictive data-driven models. Independent input variables, i.e., the water temperature (T), river discharge (Q), and specific conductance (SC) are used for the prediction of SSL based on several statistical indices. The results indicate that the performances of all studied models were close to one another; moreover, the metaheuristic algorithms were found to increase the accuracy of the ANFIS and ANN models for approximately 11.73 percent and 4.30 percent, respectively. In general, the BOA outperformed the GA in enhancing the optimization performance of the learning process in the applied machine learning models. Numéro de notice : A2022-392 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1753821 Date de publication en ligne : 29/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1753821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100685
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 961 - 977[article]A national fuel type mapping method improvement using sentinel-2 satellite data / Alexandra Stefanidou in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : A national fuel type mapping method improvement using sentinel-2 satellite data Type de document : Article/Communication Auteurs : Alexandra Stefanidou, Auteur ; Ioannis Z. Gitas, Auteur ; Thomas Katagis, Auteur Année de publication : 2022 Article en page(s) : pp 1022 - 1042 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte de la végétation
[Termes IGN] carte thématique
[Termes IGN] combustible
[Termes IGN] distribution spatiale
[Termes IGN] Grèce
[Termes IGN] image Sentinel-MSI
[Termes IGN] incendie de forêt
[Termes IGN] prévention des risquesRésumé : (auteur) Despite the fact that wildland fires have always been an integral part of many ecosystems, their increased frequency and intensity have reinforced the need of fire managers for updated and highly accurate information associated with the spatial distribution of forest fuels. In 2015, a fuel type mapping method was developed in the framework of the “National Observatory of Forest Fires (NOFFi)” project resulting in the generation of a national fuel type map. In this study, we aimed at examining the potential of the newly available Sentinel-2 satellite images for the improvement of the NOFFi’s mapping method in terms of accuracy and update effectiveness of the national fuel type map. Results demonstrate Sentinel-2 data will likely improve the resolution and reliability of national fuel type maps, increasing mapping efficiency for operational purposes. Numéro de notice : A2022-393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1756460 Date de publication en ligne : 28/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1756460 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100687
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1022 - 1042[article]Aboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models / Dibyendu Deb in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Aboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models Type de document : Article/Communication Auteurs : Dibyendu Deb, Auteur ; Shovik Deb, Auteur ; Debasis Chakraborty, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1043 - 1058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] distribution spatiale
[Termes IGN] image Landsat-8
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] modèle de régression
[Termes IGN] point d'appui
[Termes IGN] régression linéaire
[Termes IGN] régression multiple
[Termes IGN] séparateur à vaste marge
[Termes IGN] zone semi-arideRésumé : (auteur) This study compared the traditional regression models and support vector machine (SVM) for estimation of aboveground biomass (ABG) of an agro-pastoral ecology using vegetation indices derived from Landsat 8 satellite data as explanatory variables . The area falls in the Shivpuri Tehsil of Madhya Pradesh, India, which is predominantly a semi-arid tract of the Bundelkhand region. The Enhanced Vegetation Index-1 (EVI-1) was identified as the most suitable input variable for the regression models, although the collective effect of a number of the vegetation indices was evident. The EVI-1 was also the most suitable input variable to SVM, due to its capacity to distinctly differentiate diverse vegetation classes. The performance of SVM was better over regression models for estimation of the AGB. Based on the SVM-derived and the ground observations, the AGB of the area was precisely mapped for croplands, grassland and rangelands over the entire region. Numéro de notice : A2022-394 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1756461 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1756461 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100688
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1043 - 1058[article]Simulating fire-safe cities using a machine learning-based algorithm for the complex urban forms of developing nations: a case of Mumbai India / Vaibhav Kumar in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Simulating fire-safe cities using a machine learning-based algorithm for the complex urban forms of developing nations: a case of Mumbai India Type de document : Article/Communication Auteurs : Vaibhav Kumar, Auteur ; Arnab Jana, Auteur ; Krithi Ramamritham, Auteur Année de publication : 2022 Article en page(s) : pp 1084 - 1099 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] Bombay
[Termes IGN] incendie
[Termes IGN] modèle de régression
[Termes IGN] planification urbaine
[Termes IGN] prévention des risques
[Termes IGN] régression linéaire
[Termes IGN] zone urbaineRésumé : (auteur) The article addresses the void in developing analytical methods concerning to design urban configurations that could reduce fire risks, and, thus, could help in achieving sustainable goals. A novel algorithm is developed to generate alternative Urban Built Form (UBF) models that could be less susceptible to fire compared to the existing built-form. Fire susceptibility of a generated UBF is predicted using a developed linear regression model. The algorithm considers existing regulations to derive rules and develop scenarios that might be effective in building fire-resilient cities. The outcomes of the simulations showed a significant decrease in the fire susceptibility of the southern region of Mumbai city. Moreover, for a certain simulated scenario the predicted UBF could accommodate twice the current population while being less susceptible than the existing UBF. The proposed techniques and methods can act as a decision-making tool in taking pre-emptive planning measures to develop fire resilient cities. Numéro de notice : A2022-395 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1756463 Date de publication en ligne : 28/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1756463 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100689
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1084 - 1099[article]Multi-parameter risk mapping of Qazvin aquifer by classic and fuzzy clustering techniques / Saman Javadi in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Multi-parameter risk mapping of Qazvin aquifer by classic and fuzzy clustering techniques Type de document : Article/Communication Auteurs : Saman Javadi, Auteur ; Seied Mehdy Hashemy Shahdany, Auteur ; Hashemy Shahdany, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1160-1182 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] aquifère
[Termes IGN] arsenic
[Termes IGN] cartographie des risques
[Termes IGN] contamination
[Termes IGN] eau souterraine
[Termes IGN] Iran
[Termes IGN] logique floue
[Termes IGN] nitrate
[Termes IGN] pollution des eaux
[Termes IGN] vulnérabilitéRésumé : (auteur) This study proposes a new approach to establish a multi-parameter risk mapping method by employing the K-Means clustering technique. Accordingly, spatial assessment of arsenic (As), nitrate (NO3) and total dissolved solids (TDS) were carried out based on the type of land use to estimate contamination potential in an aquifer. Since risk mapping is always associated with the occurrence probability of a phenomenon, pollution occurrence probability was then obtained using the fuzzy C-means clustering. The results reveal that NO3 and As contamination levels increase from the first cluster (C1), covers 22.3% of the aquifer, to C5 encompassing 35.1% of the aquifer devoted to extensive industrial and agricultural activities. Fuzzy clustering results show that the pollution occurrence probability in each aquifer cell varied from less than 30 to more than 90%. Moreover, the results show, industrial and agricultural land uses cover about 70% of the areas with high risk of contamination. Numéro de notice : A2022-396 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1778099 Date de publication en ligne : 23/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1778099 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100690
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1160-1182[article]Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model / Hasan Aksoy in Geocarto international, vol 37 n° 4 ([15/02/2022])
[article]
Titre : Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model Type de document : Article/Communication Auteurs : Hasan Aksoy, Auteur ; Sinan Kaptan, Auteur Année de publication : 2022 Article en page(s) : pp 1183 - 1202 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] automate cellulaire
[Termes IGN] classification dirigée
[Termes IGN] détection de changement
[Termes IGN] gestion forestière
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] modèle de Markov
[Termes IGN] occupation du sol
[Termes IGN] surface cultivée
[Termes IGN] surface forestière
[Termes IGN] Turquie
[Termes IGN] utilisation du solRésumé : (auteur) This study aimed to simulate and assess forest cover and land use/land cover (LULC) changes between 2019 and 2039 using the cellular automata-Markov model. The performance of the model was evaluated by comparing the 2019 simulation map with the 2019 supervised classified map, and it was found to be reliable, with a similarity rate of 85.43%. The LULC analysis and estimates were carried out for a total of six classes: coniferous, broad-leaf, mixed forest, settlement, water and agriculture. Between 1999 and 2019, the areas of total forest increased by 17.4%, settlement by 84.6% and water by 20.1%, whereas the agriculture area decreased by 33.2%. According to 2019‒2039 land use/cover simulation results, there were decreases of 2.4% in total forest area and 3.7% in residential and water surface areas, but a 6.9% decrease in the agriculture class. Tracking these changes will contribute to decision making and strategy development efforts of forest planners and managers. Numéro de notice : A2022-397 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1778102 Date de publication en ligne : 22/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1778102 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100691
in Geocarto international > vol 37 n° 4 [15/02/2022] . - pp 1183 - 1202[article]