Remote sensing . vol 14 n° 10Paru le : 15/05/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierRegional ionospheric corrections for high accuracy GNSS positioning / Tam Dao in Remote sensing, vol 14 n° 10 (May-2 2022)
[article]
Titre : Regional ionospheric corrections for high accuracy GNSS positioning Type de document : Article/Communication Auteurs : Tam Dao, Auteur ; Ken Harima, Auteur ; Brett Anthony Carter, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2463 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Australie
[Termes IGN] Continuously Operating Reference Station network
[Termes IGN] correction ionosphérique
[Termes IGN] modèle ionosphérique
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard ionosphèriqueRésumé : (auteur) Centimetre-level accurate ionospheric corrections are required for a high accuracy and rapid convergence of Precise Point Positioning (PPP) GNSS positioning solutions. This research aims to evaluate the accuracy of a local/regional ionospheric delay model using a linear interpolation method across Australia. The accuracy of the ionospheric corrections is assessed as a function of both different latitudinal regions and the number and spatial density of GNSS Continuously Operating Reference Stations (CORSs). Our research shows that, for a local region of 5° latitude ×10° longitude in mid-latitude regions of Australia (~30° to 40°S) with approximately 15 CORS stations, ionospheric corrections with an accuracy of 5 cm can be obtained. In Victoria and New South Wales, where dense CORS networks exist (nominal spacing of ~100 km), the average ionospheric corrections accuracy can reach 2 cm. For sparse networks (nominal spacing of >200 km) at lower latitudes, the average accuracy of the ionospheric corrections is within the range of 8 to 15 cm; significant variations in the ionospheric errors of some specific satellite observations during certain periods were also found. In some regions such as Central Australia, where there are a limited number of CORSs, this model was impossible to use. On average, centimetre-level accurate ionospheric corrections can be achieved if there are sufficiently dense (i.e., nominal spacing of approximately 200 km) GNSS CORS networks in the region of interest. Based on the current availability of GNSS stations across Australia, we propose a set of 15 regions of different ionospheric delay accuracies with extents of 5° latitude ×10° longitude covering continental Australia. Numéro de notice : A2022-400 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14102463 Date de publication en ligne : 20/05/2022 En ligne : https://doi.org/10.3390/rs14102463 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100703
in Remote sensing > vol 14 n° 10 (May-2 2022) . - n° 2463[article]An algorithm to assist the robust filter for tightly coupled RTK/INS navigation system / Zun Niu in Remote sensing, vol 14 n° 10 (May-2 2022)
[article]
Titre : An algorithm to assist the robust filter for tightly coupled RTK/INS navigation system Type de document : Article/Communication Auteurs : Zun Niu, Auteur ; Guangchen Li, Auteur ; Fugui Guo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] C++
[Termes IGN] centrale inertielle
[Termes IGN] erreur de positionnement
[Termes IGN] filtre de Kalman
[Termes IGN] implémentation (informatique)
[Termes IGN] matrice de covariance
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] précision du positionnement
[Termes IGN] rapport signal sur bruit
[Termes IGN] valeur aberranteRésumé : (auteur) The Real-Time Kinematic (RTK) positioning algorithm is a promising positioning technique that can provide real-time centimeter-level positioning precision in GNSS-friendly areas. However, the performance of RTK can degrade in GNSS-hostile areas like urban canyons. The surrounding buildings and trees can reflect and block the Global Navigation Satellite System (GNSS) signals, obstructing GNSS receivers’ ability to maintain signal tracking and exacerbating the multipath effect. A common method to assist RTK is to couple RTK with the Inertial Navigation System (INS). INS can provide accurate short-term relative positioning results. The Extended Kalman Filter (EKF) is usually used to couple RTK with INS, whereas the GNSS outlying observations significantly influence the performance. The Robust Kalman Filter (RKF) is developed to offer resilience against outliers. In this study, we design an algorithm to improve the traditional RKF. We begin by implementing the tightly coupled RTK/INS algorithm and the conventional RKF in C++. We also introduce our specific implementation in detail. Then, we test and analyze the performance of our codes on public datasets. Finally, we propose a novel algorithm to improve RKF and test the improvement. We introduce the Carrier-to-Noise Ratio (CNR) to help detect outliers that should be discarded. The results of the tests show that our new algorithm’s accuracy is improved when compared to the traditional RKF. We also open source the majority of our code, as we find there are few open-source projects for coupled RTK/INS in C++. Researchers can access the codes at our GitHub. Numéro de notice : A2022-401 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14102449 Date de publication en ligne : 20/05/2022 En ligne : https://doi.org/10.3390/rs14102449 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100704
in Remote sensing > vol 14 n° 10 (May-2 2022) . - n° 2449[article]Research on automatic identification method of terraces on the Loess plateau based on deep transfer learning / Mingge Yu in Remote sensing, vol 14 n° 10 (May-2 2022)
[article]
Titre : Research on automatic identification method of terraces on the Loess plateau based on deep transfer learning Type de document : Article/Communication Auteurs : Mingge Yu, Auteur ; Xiaoping Rui, Auteur ; Weiyi Xie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2446 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] échantillonnage
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image panchromatique
[Termes IGN] image Worldview
[Termes IGN] modèle de simulation
[Termes IGN] surface cultivée
[Termes IGN] terrasseRésumé : (auteur) Rapid, accurate extraction of terraces from high-resolution images is of great significance for promoting the application of remote-sensing information in soil and water conservation planning and monitoring. To solve the problem of how deep learning requires a large number of labeled samples to achieve good accuracy, this article proposes an automatic identification method for terraces that can obtain high precision through small sample datasets. Firstly, a terrace identification source model adapted to multiple data sources is trained based on the WorldView-1 dataset. The model can be migrated to other types of images for terracing extraction as a pre-trained model. Secondly, to solve the small sample problem, a deep transfer learning method for accurate pixel-level extraction of high-resolution remote-sensing image terraces is proposed. Finally, to solve the problem of insufficient boundary information and splicing traces during prediction, a strategy of ignoring edges is proposed, and a prediction model is constructed to further improve the accuracy of terrace identification. In this paper, three regions outside the sample area are randomly selected, and the OA, F1 score, and MIoU averages reach 93.12%, 91.40%, and 89.90%, respectively. The experimental results show that this method, based on deep transfer learning, can accurately extract terraced field surfaces and segment terraced field boundaries. Numéro de notice : A2022-402 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14102446 Date de publication en ligne : 19/05/2022 En ligne : https://doi.org/10.3390/rs14102446 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100705
in Remote sensing > vol 14 n° 10 (May-2 2022) . - n° 2446[article]