[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
059-2022051 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierEvaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/03/2022])
[article]
Titre : Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur Année de publication : 2022 Article en page(s) : pp 1225 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données localisées
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] polarisation
[Termes IGN] rizièreRésumé : (Auteur) Three Sentinel-1A datasets in vertical transmitted and horizontal received (VH) and vertical transmitted and vertical received (VV) polarisations, and the linear combination of VH and VV (VHVV) are evaluated for rice green leaf area index (LAI) estimation using four machine learning regression models [Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT)]. Results showed that for the entire growing season, VV outperformed VH, recording an R2 of 0.68 and an RMSE of 0.98 m2/m2 with the k-NN model. However, VHVV produced the most accurate estimates with GBDT (R2 of 0.82 and RMSE of 0.68 m2/m2), followed by that of VHVV with RF (R2 of 0.78 and RMSE of 0.90 m2/m2). Our findings have further confirmed that combining VH and VV data can achieve improved rice growth modelling, and that tree-based algorithms can better handle data dimensionality. Numéro de notice : A2022-274 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1773545 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1773545 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100753
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1225 - 1236[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 RAB Revue Centre de documentation En réserve L003 Disponible Classification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil / Aliny Aparecida Dos Reis in Geocarto international, vol 37 n° 5 ([01/03/2022])
[article]
Titre : Classification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil Type de document : Article/Communication Auteurs : Aliny Aparecida Dos Reis, Auteur ; Steven E. Franklin, Auteur ; Fausto Weimar Acerbi Júnior, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1256 - 1273 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Brésil
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données météorologiques
[Termes IGN] Eucalyptus (genre)
[Termes IGN] géomorphométrie
[Termes IGN] MNS SRTM
[Termes IGN] plantation forestière
[Termes IGN] rendementRésumé : (Auteur) Digital elevation model (DEM) data were used with climate data to estimate productivity in 19 Eucalyptus plantations in Minas Gerais state, Brazil. Typically, plantation and individual stand growth and productivity estimates, such as Site Index (SI) and Mean Annual Increment (MAI), are based on field measures of height, tree diameter and age. Using a Random Forest modelling approach, SI and MAI were related to: (i) DEM-based geomorphometric variables and (ii) WorldClim historical macro-climatic measures. Three operational SI classes (high, medium and low productivity) in 180 stands were mapped with an overall accuracy of 91.6%. Medium and high productivity sites were the most accurately classified. Low productivity sites had 76.5% producer’s accuracy and 92.9% user’s accuracy, and were the most extensive in the study area. Such sites are considered of high importance from a plantation management perspective since additional forestry operations are likely required to address low productivity and growth. Numéro de notice : A2022-275 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1778103 Date de publication en ligne : 19/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1778103 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100782
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1256 - 1273[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 RAB Revue Centre de documentation En réserve L003 Disponible Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images / Omer Gokberk Narin in Geocarto international, vol 37 n° 5 ([01/03/2022])
[article]
Titre : Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images Type de document : Article/Communication Auteurs : Omer Gokberk Narin, Auteur ; Saygin Abdikan, Auteur Année de publication : 2022 Article en page(s) : pp 1378 - 1392 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] image multitemporelle
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] phénologie
[Termes IGN] rendement agricole
[Termes IGN] tournesol
[Termes IGN] TurquieRésumé : (Auteur) With the increase of the world’s population, while urbanization is increasing, agricultural lands are decreasing. Therefore, monitoring of up-to-date agricultural lands is important for agricultural product estimation. The study investigates suitability of Sentinel-2 data for the phenological stage analysis and yield estimation of sunflower plant. To this aim, fieldworks was conducted and sunflower parcels were identified in Zile district of Tokat province, Turkey which has dense sunflower production. In this study, ten Vegetation Indices (VIs) were performed by using multi-temporal Sentinel-2 data obtained during the growth stages of sunflower plant and yield estimation was obtained. As a result, the indices obtained on 30 June, at the stage of inflorescence emergence, provided coefficient of determination (R2) higher than 0.67 and The Root Mean Square Error (RMSE) lower than 13 kg/da. Among the VIs, the best forecast obtained by NDVI (R2 = 0.74 and RMSE = 10.80 kg/da) approximately three months before the harvest of sunflower. Numéro de notice : A2022-276 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1765886 Date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/10106049.2020.1765886 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100784
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1378 - 1392[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 RAB Revue Centre de documentation En réserve L003 Disponible Estimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image / Sinan Kaptan in Geocarto international, vol 37 n° 5 ([01/03/2022])
[article]
Titre : Estimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image Type de document : Article/Communication Auteurs : Sinan Kaptan, Auteur ; Hasan Aksoy, Auteur Année de publication : 2022 Article en page(s) : pp 1408 - 1425 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] correction géométrique
[Termes IGN] forêt inéquienne
[Termes IGN] houppier
[Termes IGN] image Landsat-OLI
[Termes IGN] occupation du sol
[Termes IGN] peuplement forestier
[Termes IGN] Turquie
[Termes IGN] utilisation du solRésumé : (Auteur) This study used the Landsat 8 OLI satellite image and the supervised classification method to estimate uneven-aged forest stand parameters and land use/cover. The spatial success of classification was also investigated. The overall success rates and Kappa values of the classification were, respectively, 74.7% and 0.75 for actual structural type, 84.6% and 0.80 for crown closure, and 88.35% and 0.81 for land use class, whereas the spatial success of classification on the forest cover type map was 36.91% for actual structural type, 64.74% for crown closure, and 41.78% for land use/cover class. The results revealed that the Landsat 8 OLI image can be used to identify stand parameters and land use/cover class. However, because the spatial success rates were below 50% for the actual structural type and land use/cover class of the stand types, it is not suitable for use in spatial classification determination for these classes. Numéro de notice : A2022-277 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1765888 Date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1080/10106049.2020.1765888 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100795
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1408 - 1425[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 RAB Revue Centre de documentation En réserve L003 Disponible