Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage par transformation
apprentissage par transformation |
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A shape transformation-based dataset augmentation framework for pedestrian detection / Zhe Chen in International journal of computer vision, vol 129 n° 4 (April 2021)
[article]
Titre : A shape transformation-based dataset augmentation framework for pedestrian detection Type de document : Article/Communication Auteurs : Zhe Chen, Auteur ; Wanli Ouyang, Auteur ; Tongliang Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1121 - 1138 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage par transformation
[Termes IGN] apprentissage profond
[Termes IGN] déformation d'objet
[Termes IGN] détection de piéton
[Termes IGN] jeu de données
[Termes IGN] synthèse d'image
[Termes IGN] vision par ordinateurRésumé : (auteur) Deep learning-based computer vision is usually data-hungry. Many researchers attempt to augment datasets with synthesized data to improve model robustness. However, the augmentation of popular pedestrian datasets, such as Caltech and Citypersons, can be extremely challenging because real pedestrians are commonly in low quality. Due to the factors like occlusions, blurs, and low-resolution, it is significantly difficult for existing augmentation approaches, which generally synthesize data using 3D engines or generative adversarial networks (GANs), to generate realistic-looking pedestrians. Alternatively, to access much more natural-looking pedestrians, we propose to augment pedestrian detection datasets by transforming real pedestrians from the same dataset into different shapes. Accordingly, we propose the Shape Transformation-based Dataset Augmentation (STDA) framework. The proposed framework is composed of two subsequent modules, i.e. the shape-guided deformation and the environment adaptation. In the first module, we introduce a shape-guided warping field to help deform the shape of a real pedestrian into a different shape. Then, in the second stage, we propose an environment-aware blending map to better adapt the deformed pedestrians into surrounding environments, obtaining more realistic-llooking pedestrians and more beneficial augmentation results for pedestrian detection. Extensive empirical studies on different pedestrian detection benchmarks show that the proposed STDA framework consistently produces much better augmentation results than other pedestrian synthesis approaches using low-quality pedestrians. By augmenting the original datasets, our proposed framework also improves the baseline pedestrian detector by up to 38% on the evaluated benchmarks, achieving state-of-the-art performance. Numéro de notice : A2021-354 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s11263-020-01412-0 Date de publication en ligne : 09/01/2021 En ligne : https://doi.org/10.1007/s11263-020-01412-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97606
in International journal of computer vision > vol 129 n° 4 (April 2021) . - pp 1121 - 1138[article]Transferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Transferring deep learning models for cloud detection between Landsat-8 and Proba-V Type de document : Article/Communication Auteurs : Gonzalo Mateo-García, Auteur ; Valero Laparra, Auteur ; Dan López-Puigdollers, Auteur ; Luis Gómez-Chova, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 17 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage par transformation
[Termes IGN] apprentissage profond
[Termes IGN] conversion de données
[Termes IGN] détection des nuages
[Termes IGN] échantillonnage de données
[Termes IGN] image Landsat-8
[Termes IGN] image multibande
[Termes IGN] image PROBA
[Termes IGN] jeu de données
[Termes IGN] masque
[Termes IGN] réseau neuronal convolutif
[Termes IGN] seuillage de pointsRésumé : (Auteur) Accurate cloud detection algorithms are mandatory to analyze the large streams of data coming from the different optical Earth observation satellites. Deep learning (DL) based cloud detection schemes provide very accurate cloud detection models. However, training these models for a given sensor requires large datasets of manually labeled samples, which are very costly or even impossible to create when the satellite has not been launched yet. In this work, we present an approach that exploits manually labeled datasets from one satellite to train deep learning models for cloud detection that can be applied (or transferred) to other satellites. We take into account the physical properties of the acquired signals and propose a simple transfer learning approach using Landsat-8 and Proba-V sensors, whose images have different but similar spatial and spectral characteristics. Three types of experiments are conducted to demonstrate that transfer learning can work in both directions: (a) from Landsat-8 to Proba-V, where we show that models trained only with Landsat-8 data produce cloud masks 5 points more accurate than the current operational Proba-V cloud masking method, (b) from Proba-V to Landsat-8, where models that use only Proba-V data for training have an accuracy similar to the operational FMask in the publicly available Biome dataset (87.79–89.77% vs 88.48%), and (c) jointly from Proba-V and Landsat-8 to Proba-V, where we demonstrate that using jointly both data sources the accuracy increases 1–10 points when few Proba-V labeled images are available. These results highlight that, taking advantage of existing publicly available cloud masking labeled datasets, we can create accurate deep learning based cloud detection models for new satellites, but without the burden of collecting and labeling a large dataset of images. Numéro de notice : A2020-043 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.024 Date de publication en ligne : 10/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.024 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94522
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 1 - 17[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Mapping theories of transformative learning / Daniel Casebeer in Cartographica, vol 52 n° 3 (Fall 2017)
[article]
Titre : Mapping theories of transformative learning Type de document : Article/Communication Auteurs : Daniel Casebeer, Auteur ; Jessica Mann, Auteur Année de publication : 2017 Article en page(s) : pp 233 – 237 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage par transformation
[Termes IGN] géographie sociale
[Termes IGN] représentation cartographique
[Termes IGN] segmentation sémantiqueRésumé : (auteur) The purpose of this study is to demonstrate the utility of social cartography for mapping theories of transformative learning. Since the 1980s, several alternative conceptions of transformative learning have emerged to challenge the dominance of Jack Mezirow's psychocritical perspective. Rather than positioning these theories in opposition to one another, this study uses textual analysis and a phenomenographic method to situate them in a heterotopic space where researchers can orient themselves as they encounter new intellectual and representational tasks brought on by the diversification of the field. Whether the map is accepted as a metaphorical curiosity or more as a literal representation, it can reveal perceived or acknowledged theoretical relationships while identifying issues in transformative education that still need to be addressed. Numéro de notice : A2017-734 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3138/cart.52.3.3956 En ligne : https://doi.org/10.3138/cart.52.3.3956 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88373
in Cartographica > vol 52 n° 3 (Fall 2017) . - pp 233 – 237[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 031-2017031 SL Revue Centre de documentation Revues en salle Disponible