Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image Sentinel > image Sentinel-3 > image Sentinel-OLCI
image Sentinel-OLCI |
Documents disponibles dans cette catégorie (10)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 / Nima Pahlevan in Remote sensing of environment, vol 270 (March 2022)
[article]
Titre : Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 Type de document : Article/Communication Auteurs : Nima Pahlevan, Auteur ; Brandon Smith, Auteur ; Krista Alikas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112860 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] appariement d'images
[Termes IGN] apprentissage automatique
[Termes IGN] chlorophylle
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] correction atmosphérique
[Termes IGN] données multisources
[Termes IGN] eaux côtières
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-OLCI
[Termes IGN] matière organique
[Termes IGN] Oregon (Etats-Unis)
[Termes IGN] qualité des eauxRésumé : (auteur) Constructing multi-source satellite-derived water quality (WQ) products in inland and nearshore coastal waters from the past, present, and future missions is a long-standing challenge. Despite inherent differences in sensors’ spectral capability, spatial sampling, and radiometric performance, research efforts focused on formulating, implementing, and validating universal WQ algorithms continue to evolve. This research extends a recently developed machine-learning (ML) model, i.e., Mixture Density Networks (MDNs) (Pahlevan et al., 2020; Smith et al., 2021), to the inverse problem of simultaneously retrieving WQ indicators, including chlorophyll-a (Chla), Total Suspended Solids (TSS), and the absorption by Colored Dissolved Organic Matter at 440 nm (acdom(440)), across a wide array of aquatic ecosystems. We use a database of in situ measurements to train and optimize MDN models developed for the relevant spectral measurements (400–800 nm) of the Operational Land Imager (OLI), MultiSpectral Instrument (MSI), and Ocean and Land Color Instrument (OLCI) aboard the Landsat-8, Sentinel-2, and Sentinel-3 missions, respectively. Our two performance assessment approaches, namely hold-out and leave-one-out, suggest significant, albeit varying degrees of improvements with respect to second-best algorithms, depending on the sensor and WQ indicator (e.g., 68%, 75%, 117% improvements based on the hold-out method for Chla, TSS, and acdom(440), respectively from MSI-like spectra). Using these two assessment methods, we provide theoretical upper and lower bounds on model performance when evaluating similar and/or out-of-sample datasets. To evaluate multi-mission product consistency across broad spatial scales, map products are demonstrated for three near-concurrent OLI, MSI, and OLCI acquisitions. Overall, estimated TSS and acdom(440) from these three missions are consistent within the uncertainty of the model, but Chla maps from MSI and OLCI achieve greater accuracy than those from OLI. By applying two different atmospheric correction processors to OLI and MSI images, we also conduct matchup analyses to quantify the sensitivity of the MDN model and best-practice algorithms to uncertainties in reflectance products. Our model is less or equally sensitive to these uncertainties compared to other algorithms. Recognizing their uncertainties, MDN models can be applied as a global algorithm to enable harmonized retrievals of Chla, TSS, and acdom(440) in various aquatic ecosystems from multi-source satellite imagery. Local and/or regional ML models tuned with an apt data distribution (e.g., a subset of our dataset) should nevertheless be expected to outperform our global model. Numéro de notice : A2022-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112860 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.1016/j.rse.2021.112860 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99705
in Remote sensing of environment > vol 270 (March 2022) . - n° 112860[article]Integrating spatio-temporal-spectral information for downscaling Sentinel-3 OLCI images / Yijie Tang in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)
[article]
Titre : Integrating spatio-temporal-spectral information for downscaling Sentinel-3 OLCI images Type de document : Article/Communication Auteurs : Yijie Tang, Auteur ; Qunming Wang, Auteur ; Xiaohua Tong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 130 - 150 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-OLCI
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réduction d'échelle
[Termes IGN] réflectanceRésumé : (auteur) Sentinel-3 is a newly launched satellite implemented by the European Space Agency (ESA) for global observation. The Ocean and Land Colour Imager (OLCI) sensor onboard Sentinel-3 provides 21 band images with a fine spectral resolution and is of great value for ocean, land and atmospheric monitoring. The two platforms (Sentinel-3A and -3B) can provide OLCI images at an almost daily temporal resolution. The coarse spatial resolution of the 21 band OLCI images (i.e., 300 m), however, limits greatly their utility for local, precise monitoring. Sentinel-2, another satellite provided by ESA, carries the Multispectral Imager (MSI) sensor which can supply much finer spatial resolution (e.g., 10 m and 20 m) images. This paper introduces a new fusion framework integrating spatio-temporal-spectral information for downscaling Sentinel-3 OLCI images, which has two parts. Based on bands with similar wavelengths (i.e., bands 2, 3, 4 and 8a for Sentinel-2 and bands Oa4, Oa6, Oa8 and Oa17 for Sentinel-3), the four Sentinel-3 bands are first downscaled to the spatial resolution of Sentinel-2 images by applying spatio-temporal fusion to Sentinel-2 MSI and Sentinel-3 OLCI images. Then, to take full advantage of all 21 available OLCI bands of the Sentinel-3 images, the extended image pair-based spatio-spectral fusion (EIPSSF) method is proposed in this paper to downscale the other 17 bands. EIPSSF is performed based on the new concept of the extended image pair (EIP) and by exploiting existing spatio-temporal fusion approaches. The framework consisting of spatio-temporal and spatio-spectral fusion is entirely general, which provides a practical solution for comprehensive downscaling of Sentinel-3 OLCI images for fine spatial, temporal and spectral resolution monitoring. Numéro de notice : A2021-654 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.012 Date de publication en ligne : 24/08/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98384
in ISPRS Journal of photogrammetry and remote sensing > vol 180 (October 2021) . - pp 130 - 150[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021101 SL Revue Centre de documentation Revues en salle Disponible 081-2021103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters / Quinten Vanhellemont in Remote sensing of environment, Vol 256 (April 2020)
[article]
Titre : Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters Type de document : Article/Communication Auteurs : Quinten Vanhellemont, Auteur ; Kevin Ruddick, Auteur Année de publication : 2021 Article en page(s) : n° 112284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Belgique
[Termes IGN] chlorophylle
[Termes IGN] correction atmosphérique
[Termes IGN] eaux côtières
[Termes IGN] image Sentinel-OLCI
[Termes IGN] particule
[Termes IGN] rayonnement infrarouge
[Termes IGN] réflectance
[Termes IGN] turbidité des eauxRésumé : (auteur) The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17%), where their reflectances were also very close to the in situ observations (MARD 11%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license. Numéro de notice : A2021-476 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112284 Date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97116
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112284[article]Assessment of chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data / Ioannis Moutzouris-Sidiris in Open geosciences, vol 13 n° 1 (January 2021)
[article]
Titre : Assessment of chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data Type de document : Article/Communication Auteurs : Ioannis Moutzouris-Sidiris, Auteur ; Konstantinos Topouzelis, Auteur Année de publication : 2021 Article en page(s) : pp 85 - 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal
[Termes IGN] couleur de l'océan
[Termes IGN] image Envisat-MERIS
[Termes IGN] image Sentinel-3
[Termes IGN] image Sentinel-OLCI
[Termes IGN] Méditerranée, merRésumé : (auteur) The objective of this study is to evaluate the efficiency of two well-known algorithms (Ocean Colour 4 for MERIS [OC4Me] and neural net [NN]) used in the calculation of chlorophyll-a (Chl-a) from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) compared to in situ measurements covering the Mediterranean Sea. In situ data set, obtained from the Copernicus Marine Environmental Monitoring Service (CMEMS) and more specifically from the data set with the title INSITU_MED_NRT_OBSERVATIONS_013_035, and Chl-a values at different depths were extracted. The concentration of Chl-a at a penetration depth was calculated. Then, water was classified into two categories, Case-1 and Case-2. For Case-2 waters, the OC4Me presents a moderate correlation with the in situ data for a time window of 0–2 h. In contrast with the NN algorithm, where very weak correlations were calculated, lower values of the statistical index of Bias for Case-1 waters were calculated for the OC4Me algorithm. Higher values of Pearson correlation were calculated (r > 0.5) for OC4Me algorithm than NN. OC4Me performed better than NN. Numéro de notice : A2021-487 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1515/geo-2020-0204 Date de publication en ligne : 29/01/2021 En ligne : https://doi.org/10.1515/geo-2020-0204 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97776
in Open geosciences > vol 13 n° 1 (January 2021) . - pp 85 - 97[article]
Titre : Climate variability and change in the 21th Century Type de document : Monographie Auteurs : Stefanos Stefanidis, Éditeur scientifique ; Konstantia Tolika, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 384 p. Format : 15 x 22 cm ISBN/ISSN/EAN : 978-3-0365-0109-3 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bassin hydrographique
[Termes IGN] Caucase
[Termes IGN] chaleur
[Termes IGN] changement climatique
[Termes IGN] climatologie
[Termes IGN] Côte d'Ivoire
[Termes IGN] cultures irriguées
[Termes IGN] gestion de l'eau
[Termes IGN] Guinée
[Termes IGN] image NPP-VIIRS
[Termes IGN] image Sentinel-OLCI
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie
[Termes IGN] modèle hydrographique
[Termes IGN] précipitation
[Termes IGN] ressources en eau
[Termes IGN] sécheresse
[Termes IGN] série temporelleRésumé : (auteur) Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept. Note de contenu : 1- Study on temporal variations of surface temperature and rainfall at Conakry Airport, Guinea: 1960–2016
2- Ushering in the new era of radiometric intercomparison of multispectral sensors with precision SNO analysis
3- The 10-year return levels of maximum wind speeds under frozen and unfrozen soil forest conditions in Finland
4- Characterization of meteorological droughts occurrences in Côte d’Ivoire: Case of the Sassandra watershed
5- Constraints to vegetation growth reduced by region-specific changes in seasonal climate
6- Influence of bias correction methods on simulated Köppen−Geiger climate zones in Europe
7- Analysis of climate change in the Caucasus region: End of the 20th–beginning of the 21st century
8- Assessing heat waves over Greece using the Excess Heat Factor (EHF)
9- Statistical analysis of recent and future rainfall and temperature variability in the Mono River watershed (Benin, Togo)
10- Multi-model forecasts of very-large fire occurences during the end of the 21st Century
11- Objective definition of climatologically homogeneous areas in the Southern Balkans based on the ERA5 data set
12- Time series analysis of MODIS-derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of recent intense drought
13- Selecting and downscaling a set of climate models for projecting climatic change for impact assessment in the upper indus basin (UIB)
14- Estimating the impact of artificially injected stratospheric aerosols on the global mean surface temperature in the 21th Century
15- A proposal to evaluate drought characteristics using multiple climate models for multiple timescales
16- Spatial and temporal rainfall variability over the mountainous central Pindus (Greece)
17- Intercomparison of univariate and joint bias correction methods in changing climate from a hydrological perspective
18- Projected changes in precipitation, temperature, and drought across California’s hydrologic regions in the 21st CenturyNuméro de notice : 28454 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0109-3 En ligne : https://doi.org/10.3390/books978-3-0365-0109-3 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99023 A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images / Heng Lyu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)PermalinkSea ice extent detection in the Bohai Sea using Sentinel-3 OLCI data / Hua Su in Remote sensing, Vol 11 n° 20 (October-2 2019)PermalinkTélédétection multispectrale et hyperspectrale des eaux littorales turbides / Morgane Larnicol (2018)PermalinkDéveloppement d'un outil de lecture et de traitement des observations satellitaires des capteurs "Ocean & Land Colour Imager" et "Multi-Spectral Imager" / Gabriel Calassou (2017)PermalinkSensitivity analysis of a bio-optical model for Italian lakes focused on Landsat-8, Sentinel-2 and Sentinel-3 / Ciro Manzo in European journal of remote sensing, vol 48 n° 1 (2015)Permalink