Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond > réseau neuronal artificiel > réseau neuronal convolutif
réseau neuronal convolutif |
Documents disponibles dans cette catégorie (105)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Geographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid / Zhen Dai in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : Geographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid Type de document : Article/Communication Auteurs : Zhen Dai, Auteur ; Sensen Wu, Auteur ; Yuanyuan Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2248 - 2269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] distribution spatiale
[Termes IGN] modèle de régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Geographically weighted regression (GWR) is a classical method of modeling spatially non-stationary relationships. The geographically neural network weighted regression (GNNWR) model solves the problem of the inaccurate construction of spatial weight kernels using a spatially weighted neural network. However, when the spatial distribution of observations is uneven, the spatial proximity expression in the input of GWR and GNNWR models does not fully represent the impact of the whole research space on the estimating point. Therefore, we established a global spatial proximity grid (GSPG) to express the spatial proximity of each estimating point and proposed a spatially weighted convolutional neural network (SWCNN) to extract the relationship between the GSPG and spatial weights. Finally, we proposed a geographically convolutional neural network weighted regression (GCNNWR) model combining SWCNN and ordinary linear regression (OLR) model to estimate spatial non-stationarity. We used two case studies of simulated data and real environment data to demonstrate the advancements of the GCNNWR model. The GCNNWR model achieved higher estimation accuracy and greater predictive power than the OLR, GWR, multi-scale GWR (MGWR), and GNNWR models. Moreover, the GCNNWR model maintained its better stability and accuracy in estimating spatially non-stationary relationships when the distribution of observations was uneven. Numéro de notice : A2022-773 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2100892 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.1080/13658816.2022.2100892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101954
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022) . - pp 2248 - 2269[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions / Di Zhu in Geoinformatica, vol 26 n° 4 (October 2022)
[article]
Titre : Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions Type de document : Article/Communication Auteurs : Di Zhu, Auteur ; Yu Liu, Auteur ; Xin Yao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 645 - 676 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse multivariée
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage
[Termes IGN] intelligence artificielle
[Termes IGN] régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphesMots-clés libres : Geospatial artificial intelligence (GeoAI) Résumé : (auteur) Geospatial artificial intelligence (GeoAI) has emerged as a subfield of GIScience that uses artificial intelligence approaches and machine learning techniques for geographic knowledge discovery. The non-regularity of data structures has recently led to different variants of graph neural networks in the field of computer science, with graph convolutional neural networks being one of the most prominent that operate on non-euclidean structured data where the numbers of nodes connections vary and the nodes are unordered. These networks use graph convolution – commonly known as filters or kernels – in place of general matrix multiplication in at least one of their layers. This paper suggests spatial regression graph convolutional neural networks (SRGCNNs) as a deep learning paradigm that is capable of handling a wide range of geographical tasks where multivariate spatial data needs modeling and prediction. The feasibility of SRGCNNs lies in the feature propagation mechanisms, the spatial locality nature, and a semi-supervised training strategy. In the experiments, this paper demonstrates the operation of SRGCNNs with social media check-in data in Beijing and house price data in San Diego. The results indicate that a well-trained SRGCNN model is capable of learning from samples and performing reasonable predictions for unobserved locations. The paper also presents the effectiveness of incorporating the idea of geographically weighted regression for handling heterogeneity between locations in the model approach. Compared to conventional spatial regression approaches, SRGCNN-based models tend to generate much more accurate and stable results, especially when the sampling ratio is low. This study offers to bridge the methodological gap between graph deep learning and spatial regression analytics. The proposed idea serves as an example to illustrate how spatial analytics can be combined with state-of-the-art deep learning models, and to enlighten future research at the front of GeoAI. Numéro de notice : A2022-865 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-021-00454-x Date de publication en ligne : 02/11/2021 En ligne : https://doi.org/10.1007/s10707-021-00454-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102158
in Geoinformatica > vol 26 n° 4 (October 2022) . - pp 645 - 676[article]Hierarchical learning with backtracking algorithm based on the visual confusion label tree for large-scale image classification / Yuntao Liu in The Visual Computer, vol 38 n° 3 (March 2022)
[article]
Titre : Hierarchical learning with backtracking algorithm based on the visual confusion label tree for large-scale image classification Type de document : Article/Communication Auteurs : Yuntao Liu, Auteur ; Yong Dou, Auteur ; Ruochun Jin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 897 - 917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage automatique
[Termes IGN] classification bayesienne
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation sémantiqueRésumé : (auteur) In this paper, a hierarchical learning algorithm based on the Bayesian Neural Network classifier with backtracking is proposed to support large-scale image classification, where a Visual Confusion Label Tree is established for constructing a hierarchical structure for large numbers of categories in image datasets and determining the hierarchical learning tasks automatically. Specifically, the Visual Confusion Label Tree is established based on outputs of convolution neural network models. One parent node on the Visual Confusion Label Tree contains a set of sibling coarse-grained categories, and child nodes have several sets of fine-grained categories which are partitions of categories on the parent node. The proposed Hierarchical Bayesian Neural Network with backtracking algorithm can benefit from the hierarchical structure of the Visual Confusion Label Tree. Focusing on those confusion subsets instead of the entire set of categories makes the classification ability of the tree classifier stronger. The backtracking algorithm can utilize the uncertainty information captured from the Bayesian Neural Network to make a second classification to re-correct samples that were classified incorrectly in the previous classification process. Experiments on four large-scale datasets show that our tree classifier obtains a significant improvement over the state-of-the-art tree classifier, which have demonstrated the discriminative hierarchical structure of our Visual Confusion Label Tree and the effectiveness of our Hierarchical Bayesian Neural Network with backtracking algorithm. Numéro de notice : A2022-149 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-021-02058-w Date de publication en ligne : 04/02/2021 En ligne : http://dx.doi.org/10.1007/s00371-021-02058-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100070
in The Visual Computer > vol 38 n° 3 (March 2022) . - pp 897 - 917[article]Identification de relations spatiales par apprentissage profond sur des graphes / Azelle Courtial in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
[article]
Titre : Identification de relations spatiales par apprentissage profond sur des graphes Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya , Auteur ; Xiang Zhang, Auteur Année de publication : 2022 Conférence : ICC 2021, 30th ICA international cartographic conference 14/12/2021 18/12/2021 Florence Italie Article en page(s) : pp 77 - 80 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Termes IGN] alignement
[Termes IGN] apprentissage profond
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau routier
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) L'identification des structures et relations spatiales est une tâche clé de la généralisation cartographique automatique. Dans cet article, nous explorons le potentiel des réseaux d'apprentissage profond par convolution sur des graphes (GCN) pour apprendre à identifier des relations spatiales à travers deux cas d'études : la détection d'alignement et la sélection du réseau routier. Nos résultats sont plutôt encourageants et mettent en lumière les enjeux liés à la construction et l'enrichissement d'une structure de graphes adaptée à la tâche dont on désire l'apprentissage. Numéro de notice : A2022-679 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101900
in Cartes & Géomatique > n° 247-248 (mars-juin 2022) . - pp 77 - 80[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 021-2022011 SL Revue Centre de documentation Revues en salle Disponible Detection of damaged buildings after an earthquake with convolutional neural networks in conjunction with image segmentation / Ramazan Unlu in The Visual Computer, vol 38 n° 2 (February 2022)
[article]
Titre : Detection of damaged buildings after an earthquake with convolutional neural networks in conjunction with image segmentation Type de document : Article/Communication Auteurs : Ramazan Unlu, Auteur ; Recep Kiriş, Auteur Année de publication : 2022 Article en page(s) : pp 685 - 694 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] bâtiment
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection de changement
[Termes IGN] dommage matériel
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation d'image
[Termes IGN] séismeRésumé : (auteur) Detecting damaged buildings after an earthquake as quickly as possible is important for emergency teams to reach these buildings and save the lives of many people. Today, damaged buildings after the earthquake are carried out by the survivors contacting the authorities or using some air vehicles such as helicopters. In this study, AI-based systems were tested to detect damaged or destroyed buildings by integrating into street camera systems after unexpected disasters. For this purpose, we have used VGG-16, VGG-19, and NASNet convolutional neural network models which are often used for image recognition problems in the literature to detect damaged buildings. In order to effectively implement these models, we have first segmented all the images with the K-means clustering algorithm. Thereafter, for the first phase of this study, segmented images labeled “damaged buildings” and “normal” were classified and the VGG-19 model was the most successful model with a 90% accuracy in the test set. Besides, as the second phase of the study, we have created a multiclass classification problem by labeling segmented images as “damaged buildings,” “less damaged buildings,” and “normal.” The same three architectures are used to achieve the most accurate classification results on the test set. VGG-19 and VGG-16, and NASNet have achieved considerable success in the test set with about 70%, 67%, and 62% accuracy, respectively. Numéro de notice : A2022-145 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-020-02043-9 Date de publication en ligne : 03/01/2022 En ligne : https://doi.org/10.1007/s00371-020-02043-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100039
in The Visual Computer > vol 38 n° 2 (February 2022) . - pp 685 - 694[article]GCN-Denoiser: mesh denoising with graph convolutional networks / Yuefan Shen in ACM Transactions on Graphics, TOG, Vol 41 n° 1 (February 2022)PermalinkGNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet / Milad Asgarimehr in Remote sensing of environment, vol 269 (February 2022)PermalinkObject recognition algorithm based on optimized nonlinear activation function-global convolutional neural network / Feng-Ping An in The Visual Computer, vol 38 n° 2 (February 2022)PermalinkSpatiotemporal temperature fusion based on a deep convolutional network / Xuehan Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 2 (February 2022)PermalinkConstruction d’un plugin QGIS de détection d’îlots de chaleur urbains à partir d’images satellitaires de type optique / Houssayn Meriche (2022)PermalinkPermalinkPermalinkPhotogrammetric point clouds: quality assessment, filtering, and change detection / Zhenchao Zhang (2022)PermalinkStudying informativeness of satellite image texture for sea ice state retrieval using deep learning methods / Clément Fougerouse (2022)PermalinkA deep multi-modal learning method and a new RGB-depth data set for building roof extraction / Mehdi Khoshboresh Masouleh in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)Permalink