Descripteur
Documents disponibles dans cette catégorie (69)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Géo-référencement précis d'acquisition photogrammétrique de « longues » scènes d'intérieur / Truong Giang Nguyen (2018)
Titre : Géo-référencement précis d'acquisition photogrammétrique de « longues » scènes d'intérieur Type de document : Thèse/HDR Auteurs : Truong Giang Nguyen , Auteur ; Marc Pierrot-Deseilligny , Directeur de thèse Editeur : Champs/Marne : Université Paris-Est Année de publication : 2018 Note générale : Bibliographie
Thèse de Doctorat de l'Université Paris-Est, Mathématiques et Sciences et Technologies de l'Information et de la Communication, Traitement du signal et de l'imageLangues : Français (fre) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] compensation par faisceaux
[Termes IGN] erreur systématique
[Termes IGN] estimation de pose
[Termes IGN] étalonnage de capteur (imagerie)
[Termes IGN] extraction de points
[Termes IGN] photogrammétrie métrologique
[Termes IGN] points homologues
[Termes IGN] post-traitement
[Termes IGN] scène intérieureIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Au cours des dernières décennies, plusieurs ruptures technologiques ont favorisé le développement de la photogrammétrie : développement et miniaturisation des appareils photographiques numériques, avènement du drone civil et de la cartographie mobile, apparition de nouveaux algorithmes permettant des traitements 100% automatiques, etc. La photogrammétrie est redevenue une technique de mesure et de surveillance incontournable, surtout dans les contextes où le coût et la légèreté du matériel sont contraignants. Dans ce contexte, l'IGN et l'équipe LOEMI du laboratoire LaSTIG cherchent à développer des plateformes matérielles et logicielles permettant d'atteindre simultanément productivité et précision de la mesure. Les utilisations de la photogrammétrie qui nécessitent une grande précision sont par exemple la mesure de déformations ou encore la métrologie industrielle. Sur des acquisitions à larges étendues, notamment les acquisitions linéaires de type corridor, les relevés photogrammétriques sont souvent entachés d'erreurs systématiques, ayant de fortes conséquences sur la précision de localisation du résultat final. Dans la chaı̂ne métrologique de photogrammétrie, l'extraction des points homologues est une des causes de l'imprécision du résultat final. Cette thèse consiste à réaliser une méthode permettant d'améliorer la précision du processus de traitement photogrammétrique existant pour réduire les erreurs systématiques. Nous proposons une méthode de post-traitement du processus photogrammétrique classique. Nous utilisons des modélisations de l'acquisition (poses et calibration des caméras) et de la scène (maillage 3D) obtenue avec un traitement classique, pour extraire de nouveaux points homologues en optimisant leurs caractéristiques pour la photogrammétrie. Ces caractéristiques sont : la distribution optimale dans l'espace image et objet, la multiplicité des points sur les images et la précision de la mesure. Une seconde itération d'ajustement de faisceaux avec les nouveaux points obtenus permet de raffiner l'orientation externe et la calibration de la caméra et donc d'améliorer la précision de localisation des points 3D finaux. Les résultats obtenus à partir des jeux de tests issus de différents scénarios montrent l'efficacité et la robustesse de la méthode en diminuant significativement le résidu des points 3D triangulés. Les temps de calcul et le nombre d'itérations sont également étudiés. Les résultats du processus de raffinement convergent dès la seconde itération et montrent que cette méthode ne demande qu'environ 10% du temps d'exécution total de la chaı̂ne classique pour atteindre une amélioration notable. Numéro de notice : 25448 Affiliation des auteurs : LASTIG MATIS (2012-2019) Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Traitement du signal et de l'image : Université Paris-Est : 2018 Organisme de stage : LaSTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 12/02/2020 En ligne : https://theses.hal.science/tel-02476477 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94161 Localisation par l'image en milieu urbain : application à la réalité augmentée / Antoine Fond (2018)
Titre : Localisation par l'image en milieu urbain : application à la réalité augmentée Type de document : Thèse/HDR Auteurs : Antoine Fond, Auteur ; Marie-Odile Berger, Directeur de thèse Editeur : Nancy, Metz : Université de Lorraine Année de publication : 2018 Importance : 138 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du doctorat de l'Université de Lorraine, Ecole doctorale IAEM Lorraine, mention Informatique, 2018Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] appariement de formes
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] détection du bâti
[Termes IGN] distance de Manhattan
[Termes IGN] estimation de pose
[Termes IGN] façade
[Termes IGN] orthorectification
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] point de fuite
[Termes IGN] réalité augmentée
[Termes IGN] recalage d'image
[Termes IGN] recalage de surfaces
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateur
[Termes IGN] zone urbaineIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans cette thèse, on aborde le problème de la localisation en milieux urbains. Inférer un positionnement précis en ville est important dans nombre d’applications comme la réalité augmentée ou la robotique mobile. Or les systèmes basés sur des capteurs inertiels (IMU) sont sujets à des dérives importantes et les données GPS peuvent souffrir d’un effet de vallée qui limite leur précision. Une solution naturelle est de s’appuyer le calcul de pose de caméra en vision par ordinateur. On remarque que les bâtiments sont les repères visuels principaux de l’humain, mais aussi des objets d’intérêt pour les applications de réalité augmentée. On cherche donc à partir d’une seule image à calculer la pose de la caméra par rapport à une base de données de bâtiments références connus. On décompose le problème en deux parties : trouver les références visibles dans l’image courante (reconnaissance de lieux) et calculer la pose de la caméra par rapport à eux. Les approches classiques de ces deux sous-problèmes sont mises en difficultés dans les environnements urbains à cause des forts effets perspectives, des répétitions fréquentes et de la similarité visuelle entre façades. Si des approches spécifiques à ces environnements ont été développés qui exploitent la grande régularité structurelle de tels milieux, elles souffrent encore d’un certain nombre de limitations autant pour la détection et la reconnaissance de façades que pour le calcul de pose par recalage de modèle. La méthode originale développée dans cette thèse s’inscrit dans ces approches spécifiques et vise à dépasser ces limitations en terme d’efficacité et de robustesse aux occultations, aux changements de points de vue et d’illumination. Pour cela, l’idée principale est de profiter des progrès récents de l’apprentissage profond par réseaux de neurones convolutionnels pour extraire de l’information de haut-niveau sur laquelle on peut baser des modèles géométriques. Notre approche est donc mixte Bottom-Up/Top-Down et se décompose en trois étapes clés. Nous proposons tout d’abord une méthode d’estimation de la rotation de la pose de caméra. Les 3 points de fuite principaux des images en milieux urbains, dits points de fuite de Manhattan sont détectés grâce à un réseau de neurones convolutionnels (CNN) qui fait à la fois une estimation de ces points de fuite, mais aussi une segmentation de l’image relativement à eux. Une second étape de raffinement utilise ces informations et les segments de l’image dans une formulation bayésienne pour estimer efficacement et plus précisément ces points. L’estimation de la rotation de la caméra permet de rectifier les images et ainsi s’affranchir des effets de perspectives pour la recherche de la translation. Dans une seconde contribution, nous visons ainsi à détecter les façades dans ces images rectifiées et à les reconnaître parmi une base de bâtiments connus afin d’estimer une translation grossière. Dans un souci d’efficacité, on a proposé une série d’indices basés sur des caractéristiques spécifiques aux façades (répétitions, symétrie, sémantique) qui permettent de sélectionner rapidement des candidats façades potentiels. Ensuite, ceux-ci sont classifiés en façade ou non selon un nouveau descripteur CNN contextuel. Enfin la mise en correspondance des façades détectées avec les références est opérée par un recherche au plus proche voisin relativement à une métrique apprise sur ces descripteurs [...] Note de contenu : Introduction
1 - Etat de l'art
2 - Estimation des points de fuite de Manhattan
3 - Proposition de façades pour la détection et la reconnaissance de bâtiments
4 - Segmentation et recalage de façade conjoint
ConclusionNuméro de notice : 21592 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de doctorat : Informatique : Université de Lorraine : 2018 Organisme de stage : IFSTTAR nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2018LORR0028 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90630 Machine learning and pose estimation for autonomous robot grasping with collaborative robots / Victor Talbot (2018)
Titre : Machine learning and pose estimation for autonomous robot grasping with collaborative robots Type de document : Mémoire Auteurs : Victor Talbot, Auteur Editeur : Strasbourg : Institut National des Sciences Appliquées INSA Strasbourg Année de publication : 2018 Importance : 70 p. Format : 21 x 30 cm Note générale : bibliographie
Mécatronique parcours mécanique pour la robotique, Master Imagerie, Robotique et Ingénierie pour le Vivant, Parcours Automatique RobotiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage automatique
[Termes IGN] C++
[Termes IGN] classification bayesienne
[Termes IGN] classification par réseau neuronal
[Termes IGN] estimation de pose
[Termes IGN] image 3D
[Termes IGN] image RVB
[Termes IGN] Matlab
[Termes IGN] navigation autonome
[Termes IGN] Point Cloud Library PCL
[Termes IGN] Python (langage de programmation)
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconnaissance d'objets
[Termes IGN] robotique
[Termes IGN] semis de points
[Termes IGN] vision par ordinateur
[Termes IGN] zone d'intérêtIndex. décimale : INSAS Mémoires d'ingénieur de l'INSA Strasbourg - Topographie, ex ENSAIS Résumé : (auteur) L'objectif du stage est de déterminer l'emplacement en trois dimensions d'une zone de préhension sur un objet dans le but d'automatiser la prise de cet objet par un robot anthropomorphe. La prise d'image est assurée par une caméra RGB-D prenant un nuage de points colorés en trois dimensions. La caméra est montée sur un second robot, ce qui permet l'exploration visuelle d'un plus grand espace, et ce, sous plusieurs points de vue. La solution proposée utilise Matlab et un réseau neuronal afin de proposer une zone d'intérêt. Le choix du Machine Learning est motivé par l'adaptabilité de l'algorithme. De cette façon, un objet jamais aperçu auparavant peut être attrapé par notre système robotique. Le système retourne la position X, Y et Z dans l'espace ainsi que l'orientation O et la largeur de l'objet D. Le système proposé a obtenu des résultats de 80 % sur des objets non entraînés. Note de contenu : Introduction
1- States of the arts
2- Realization
3- ConclusionNuméro de notice : 24593 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire masters divers Organisme de stage : School of Engineering (Cardiff University) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92164 Documents numériques
en open access
Machine learning and pose estimation... - pdf auteurAdobe Acrobat PDF
Titre : Robust hand pose recognition from stereoscopic capture Type de document : Thèse/HDR Auteurs : Rilwan Remilekun Basaru, Auteur Editeur : Londres : University of London Press Année de publication : 2018 Importance : 200 p. Format : 21 x 30 cm Note générale : bibliographie
A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Computer Science, City, University of LondonLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] estimation de pose
[Termes IGN] image RVB
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] régression
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Hand pose is emerging as an important interface for human-computer interaction. The problem of hand pose estimation from passive stereo inputs has received less attention in the literature compared to active depth sensors. This thesis seeks to address this gap by presenting a data-driven method to estimate a hand pose from a stereoscopic camera input, with experimental results comparable to more expensive active depth sensors. The frameworks presented in this thesis are based on a two camera stereo rig capture as it yields a simpler and cheaper set-up and calibration. Three frameworks are presented, describing the sequential steps taken to solve the problem of depth and pose estimation of hands.
The first is a data-driven method to estimate a high quality depth map of a hand from a stereoscopic camera input by introducing a novel regression framework. The method first computes disparity using a robust stereo matching technique. Then, it applies a machine learning technique based on Random Forest to learn the mapping between the estimated disparity and depth given ground truth data. We introduce Eigen Leaf Node Features (ELNFs) that perform feature selection at the leaf nodes in each tree to identify features that are most discriminative for depth regression. The system provides a robust method for generating a depth image with an inexpensive stereo camera.
The second framework improves on the task of hand depth estimation from stereo capture by introducing a novel superpixel-based regression framework that takes advantage of the smoothness of the depth surface of the hand. To this end, it introduces Conditional Regressive Random Forest (CRRF), a method that combines a Conditional Random Field (CRF) and a Regressive Random Forest (RRF) to model the mapping from a stereo RGB image pair to a depth image. The RRF provides a unary term that adaptively selects different stereo-matching measures as it implicitly determines matching pixels in a coarse-to-fine manner. While the RRF makes depth prediction for each super-pixel independently, the CRF unifies the prediction of depth by modeling pair-wise interactions between adjacent superpixels.
The final framework introduces a stochastic approach to propose potential depth solutions to the observed stereo capture and evaluate these proposals using two convolutional neural networks (CNNs). The first CNN, configured in a Siamese network architecture, evaluates how consistent the proposed depth solution is to the observed stereo capture. The second CNN estimates a hand pose given the proposed depth. Unlike sequential approaches that reconstruct pose from a known depth, this method jointly optimizes the hand pose and depth estimation through Markov-chain Monte Carlo (MCMC) sampling. This way, pose estimation can correct for errors in depth estimation, and vice versa.
Experimental results using an inexpensive stereo camera show that the proposed system measures pose more accurately than competing methods. More importantly, it presents the possibility of pose recovery from stereo capture that is on par with depth based pose recovery.Numéro de notice : 17505 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère En ligne : https://openaccess.city.ac.uk/19938/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90396 Automatic registration of images to untextured geometry using average shading gradients / Tobias Plötz in International journal of computer vision, vol 125 n° 1-3 (December 2017)
[article]
Titre : Automatic registration of images to untextured geometry using average shading gradients Type de document : Article/Communication Auteurs : Tobias Plötz, Auteur ; Stefan Roth, Auteur Année de publication : 2017 Conférence : ICCV 2015, International Conference on Computer Vision 11/12/2015 18/12/2015 Santiago Chili OA Proceedings Article en page(s) : pp 65 - 81 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] attribut géomètrique
[Termes IGN] estimation de pose
[Termes IGN] gradient
[Termes IGN] maillage par triangles
[Termes IGN] ombre
[Termes IGN] SIFT (algorithme)
[Termes IGN] superposition d'imagesRésumé : (Auteur) Many existing approaches for image-to-geometry registration assume that either a textured 3D model or a good initial guess of the 3D pose is available to bootstrap the registration process. In this paper we consider the registration of photographs to 3D models even when no texture information is available. This is very challenging as we cannot rely on texture gradients, and even shading gradients are hard to estimate since the lighting conditions are unknown. To that end, we propose average shading gradients, a rendering technique that estimates the average gradient magnitude over all lighting directions under Lambertian shading. We use this gradient representation as the building block of a registration pipeline based on matching sparse features. To cope with inevitable false matches due to the missing texture information and to increase robustness, the pose of the 3D model is estimated in two stages. Coarse pose hypotheses are first obtained from a single correct match each, subsequently refined using SIFT flow, and finally verified. We apply our algorithm to registering images of real-world objects to untextured 3D meshes of limited accuracy. Moreover, we show that registration can be performed even for paintings despite lacking photo-realism. Numéro de notice : A2017-813 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s11263-017-1022-x En ligne : https://doi.org/10.1007/s11263-017-1022-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89255
in International journal of computer vision > vol 125 n° 1-3 (December 2017) . - pp 65 - 81[article]PermalinkAmélioration de la vitesse et de la qualité d'image du rendu basé image / Rodrigo Ortiz Cayón (2017)PermalinkPermalinkLocalisation basée amers visuels : détection et mise à jour d’amers avec gestion des incertitudes / Xiaozhi Qu (2017)PermalinkPermalinkRéseaux de neurones convolutifs pour la segmentation sémantique et l'apprentissage d'invariants de couleur / Damien Fourure (2017)PermalinkSecond iteration of photogrammetric pipeline to enhance the accuracy of image pose estimation / Truong Giang Nguyen (2017)PermalinkVision stéréoscopique temps-réel pour la navigation autonome d'un robot en environnement dynamique / Maxime Derome (2017)PermalinkPermalinkMétrologie par photogrammétrie aéroportée légère : application au suivi d'évolution de digues / Vincent Tournadre (2015)Permalink