Descripteur
Documents disponibles dans cette catégorie (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Adaptive block modeling of time dependent variations of datum reference points in a tectonically active area / Chun-Yun Chou in Survey review, vol 54 n° 386 (September 2022)
[article]
Titre : Adaptive block modeling of time dependent variations of datum reference points in a tectonically active area Type de document : Article/Communication Auteurs : Chun-Yun Chou, Auteur ; Jen-Yu Han, Auteur Année de publication : 2022 Article en page(s) : pp 404 - 419 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] analyse de groupement
[Termes IGN] angle d'Euler
[Termes IGN] champ de vitesse
[Termes IGN] Cinématique
[Termes IGN] collocation par moindres carrés
[Termes IGN] données GNSS
[Termes IGN] formule d'Euler
[Termes IGN] matrice de covariance
[Termes IGN] rotation
[Termes IGN] série temporelle
[Termes IGN] station GNSS
[Termes IGN] système de référence local
[Termes IGN] Taïwan
[Termes IGN] tectonique des plaques
[Termes IGN] variation temporelleRésumé : (auteur) Although a dynamic or semi-dynamic datum has been adopted in some countries, it remains a challenge if a long-term stable datum is to be established in a tectonic active area. This study presents an approach to realistically reflect the time dependent behaviors of ground reference points while maintaining the long-term stability of a datum. An adaptive approach coupled with the Euler motion model is proposed for dividing an area into blocks. A least-squares collocation is then applied for modeling the residual velocities in each block. A case study using the data from 375 continuously operated GNSS stations in Taiwan is presented. It is illustrated that the complex surface kinematics in this region can be divided into three blocks. Significant reductions up to 64% of residual velocities were obtained. This shows that a stable datum can be established in a region with active and complicated surface kinematics by implementing the proposed. Numéro de notice : A2022-658 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1949194 Date de publication en ligne : 12/07/2021 En ligne : https://doi.org/10.1080/00396265.2021.1949194 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101509
in Survey review > vol 54 n° 386 (September 2022) . - pp 404 - 419[article]Design and implementation of a model predictive observer for AHRS / Jafar Keighobadi in GPS solutions, vol 22 n° 1 (January 2018)
[article]
Titre : Design and implementation of a model predictive observer for AHRS Type de document : Article/Communication Auteurs : Jafar Keighobadi, Auteur ; Hamid Vosoughi, Auteur ; Javad Faraji, Auteur Année de publication : 2018 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] angle d'Euler
[Termes IGN] attitude and heading reference system AHRS
[Termes IGN] erreur instrumentale
[Termes IGN] erreur systématique
[Termes IGN] estimateur
[Termes IGN] filtre de Kalman
[Termes IGN] GPS-INS
[Termes IGN] microsystème électromécanique
[Termes IGN] véhiculeRésumé : (auteur) A GPS-aided Inertial Navigation System (GAINS) is used to determine the orientation‚ position and velocity of ground and aerial vehicles. The data measured by Inertial Navigation System (INS) and GPS are commonly integrated through an Extended Kalman Filter (EKF). Since the EKF requires linearized models and complete knowledge of predefined stochastic noises‚ the estimation performance of this filter is attenuated by unmodeled nonlinearity and bias uncertainties of MEMS inertial sensors. The Attitude Heading Reference System (AHRS) is applied based on the quaternion and Euler angles methods. A moving horizon-based estimator such as Model Predictive Observer (MPO) enables us to approximate and estimate linear systems affected by unknown uncertainties. The main objective of this research is to present a new MPO method based on the duality principle between controller and observer of dynamic systems and its implementation in AHRS mode of a low-cost INS aided by a GPS. Asymptotic stability of the proposed MPO is proven by applying Lyapunov’s direct method. The field test of a GAINS is performed by a ground vehicle to assess the long-time performance of the MPO method compared with the EKF. Both the EKF and MPO estimators are applied in AHRS mode of the MEMS GAINS for the purpose of real-time performance comparison. Furthermore‚ we use flight test data of the GAINS for evaluation of the estimation filters. The proposed MPO based on both the Euler angles and quaternion methods yields better estimation performances compared to the classic EKF. Numéro de notice : A2018-017 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-017-0696-4 En ligne : https://doi.org/10.1007/s10291-017-0696-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89114
in GPS solutions > vol 22 n° 1 (January 2018)[article]Concept of AHRS algorithm designed for platform independent IMU attitude alignment / Dariusz Tomaszewski in Reports on geodesy and geoinformatics, vol 104 n° 1 (December 2017)
[article]
Titre : Concept of AHRS algorithm designed for platform independent IMU attitude alignment Type de document : Article/Communication Auteurs : Dariusz Tomaszewski, Auteur ; Jacek Rapinski, Auteur ; Renata Pelc-Mieczkowska, Auteur Année de publication : 2017 Article en page(s) : pp 33 - 47 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] accélération
[Termes IGN] angle d'Euler
[Termes IGN] attitude and heading reference system AHRS
[Termes IGN] centrale inertielle
[Termes IGN] instabilité du vecteur (télédétection)
[Termes IGN] système de coordonnées
[Termes IGN] téléphone intelligentRésumé : (Auteur) Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles. The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated. Numéro de notice : A2017-794 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/rgg-2017-0013 En ligne : https://doi.org/10.1515/rgg-2017-0013 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89071
in Reports on geodesy and geoinformatics > vol 104 n° 1 (December 2017) . - pp 33 - 47[article]
Titre : Instantaneous estimation of attitude from GNSS Type de document : Thèse/HDR Auteurs : Hendy Fitrian Suhandri, Auteur ; Alfred Kleusberg, Directeur de thèse ; Hasanuddin Zainal Abidin, Directeur de thèse Editeur : Stuttgart : University of Stuttgart Année de publication : 2017 Importance : 143 p. Format : 21 x 30 cm Note générale : Bibliographie
thesis accepted by the Faculty of Aerospace Engineering and Geodesy of the University of Stuttgart in partial fulfilment of the requirements for the degree of Doctor of Engineering Sciences (Dr.-Ing.)Langues : Anglais (eng) Descripteur : [Termes IGN] ambiguïté entière
[Termes IGN] angle d'Euler
[Termes IGN] double différence
[Termes IGN] filtre de Kalman
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle stochastique
[Termes IGN] orientation de véhicule
[Termes IGN] positionnement cinématique
[Termes IGN] positionnement par GNSS
[Termes IGN] récepteur GNSS
[Termes IGN] simple différence
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) The use of the Global Navigation Satellite System (GNSS) is widely spread from position determination to attitude determination of a platform in space. This system offers time invariant estimation position. Another thing that can be an advantage is that the flexibility to operate the GNSS receiver variants, from the low-cost until the high-performance GNSS receivers. In terms of attitude determination application at least three receivers are required to determine three spatial axes, where the cost-effective GNSS attitude determination systems can be constructed with today’s receiver technology. At the moment, however, algorithms are lacking which are fast and efficient enough to estimate the position angles without delay. For this reason, the present work deals with the development of algorithms for the attitude determination in space of a platform under the help of the "GNSS" Global Positioning System (GPS). The investigation through this work is classified into three sequential parts: The first part is the estimation of the optimal configuration of baseline array as well as the estimation of the integer ambiguity of carrier phase differences. The estimated integer ambiguity is then used to estimate the high precision baseline coordinates. The second part is to estimate the attitude of the platform in space by means of quaternion using batch process, and the last part is to improve the algorithm using a recursive algorithm for the kinematic application purpose. The precise attitude determination about three spatial axes is possible if at least three GNSS receivers with fixed baselines are used in particular array configurations. Assuming that the basic lengths of the baselines are known a priori, the attitude angles can be calculated via the combination of carrier phase and pseudorange observations. Since the carrier of the GPS signal is propagated in short-wave form, the measured phase differences are ambiguous. The multiples of the GPS signal phases together with the baseline lengths are therefore estimated and improved in a first step with the aid of the a priori baseline lengths information. The multiple-baseline float solution estimation method is used. However, the approach does not provide optimal results. Therefore, an alternative algorithm for the float solution is presented, which estimates the float solution by using the socalled the gradient based iterative method of the least-squares. It shows that method is able to give convergent estimate parameter. It is also shown here that the proposed method outperforms the conventional iterative least-squares in terms of iteration number and computational time. For instantaneous applications, the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method is not optimal for fixing the integer multiples of the carrier phase differences for several baseline lengths. In addition, this method requires a high computational effort as soon as a larger number of baseline lines enter into the calculation. An improvement in this work is utilising the partial LAMBDA method, which only uses a subset of the integer multiples to be determined. This algorithm improves the determination of integer multiples and precise calculation of the baseline lengths. The advantages of this algorithm are discussed, and it is empirically demonstrated that the ambiguities are better resolved. Furthermore, the estimation of the attitude angles with the aid of quaternions is theoretically improved and analysed. Two processing strategies are investigated: the least-squares method and the Kalman Filter (KF) method. For the static case, the least-squares is applied and tested. Simulations show that the developed gradient based iterative method of the least-squares provides better estimates than the conventional adjustment methods. It is also shown that the number of iterations required is less and the computational time is reduced. This algorithm is not useful for kinematic applications where a fast sequence of results is required. A modified Extended Kalman Filter (EKF)-Like algorithm is used for kinematic applications. Experiments show that with this algorithm more stable quaternions can be calculated with fewer outliers than when they are determined by the least-squares method. All newly developed algorithms are theoretically analysed and subjected to extensive simulations and experimental kinematic tests in the field. Note de contenu : Introduction
1 - General mathematical model of GNSS positioning
2 - Multi-baseline GNSS estimation method
3 - GNSS based attitude determination
4 - Recursive attitude determination
5 - Experimental result of static and kinematic tests
6 - Summary, conclusion and future work suggestionNuméro de notice : 21574 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : Doctor thesis : Engineering sciences : Stuttgart : 2017 DOI : 10.18419/opus-9239 En ligne : http://dx.doi.org/10.18419/opus-9239 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90576