Mention de date : August 2022
Paru le : 01/08/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierTransfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
[article]
Titre : Transfer learning from citizen science photographs enables plant species identification in UAV imagery Type de document : Article/Communication Auteurs : Salim Soltani, Auteur ; Hannes Feilhauer, Auteur ; Robbert Duker, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données naturalistes
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] espèce végétale
[Termes IGN] filtrage de la végétation
[Termes IGN] identification de plantes
[Termes IGN] image captée par drone
[Termes IGN] orthoimage couleur
[Termes IGN] science citoyenne
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Accurate information on the spatial distribution of plant species and communities is in high demand for various fields of application, such as nature conservation, forestry, and agriculture. A series of studies has shown that Convolutional Neural Networks (CNNs) accurately predict plant species and communities in high-resolution remote sensing data, in particular with data at the centimeter scale acquired with Unoccupied Aerial Vehicles (UAV). However, such tasks often require ample training data, which is commonly generated in the field via geocoded in-situ observations or labeling remote sensing data through visual interpretation. Both approaches are laborious and can present a critical bottleneck for CNN applications. An alternative source of training data is given by using knowledge on the appearance of plants in the form of plant photographs from citizen science projects such as the iNaturalist database. Such crowd-sourced plant photographs typically exhibit very different perspectives and great heterogeneity in various aspects, yet the sheer volume of data could reveal great potential for application to bird’s eye views from remote sensing platforms. Here, we explore the potential of transfer learning from such a crowd-sourced data treasure to the remote sensing context. Therefore, we investigate firstly, if we can use crowd-sourced plant photographs for CNN training and subsequent mapping of plant species in high-resolution remote sensing imagery. Secondly, we test if the predictive performance can be increased by a priori selecting photographs that share a more similar perspective to the remote sensing data. We used two case studies to test our proposed approach with multiple RGB orthoimages acquired from UAV with the target plant species Fallopia japonica and Portulacaria afra respectively. Our results demonstrate that CNN models trained with heterogeneous, crowd-sourced plant photographs can indeed predict the target species in UAV orthoimages with surprising accuracy. Filtering the crowd-sourced photographs used for training by acquisition properties increased the predictive performance. This study demonstrates that citizen science data can effectively anticipate a common bottleneck for vegetation assessments and provides an example on how we can effectively harness the ever-increasing availability of crowd-sourced and big data for remote sensing applications. Numéro de notice : A2022-488 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100016 Date de publication en ligne : 23/05/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100956
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022) . - n° 100016[article]Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
[article]
Titre : Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes Type de document : Article/Communication Auteurs : Christian Kruse, Auteur ; Dennis Wittich, Auteur ; Franz Rottensteiner, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme du recuit simulé
[Termes IGN] chevauchement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] échantillonnage de données
[Termes IGN] Europe centrale
[Termes IGN] guerre
[Termes IGN] image aérienne
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] processus ponctuel marqué
[Termes IGN] processus stochastiqueRésumé : (auteur) Even more than 75 years after the Second World War, numerous unexploded bombs (duds) linger in the ground and pose a considerable hazard to society. The areas containing these duds are documented in so-called impact maps, which are based on locations of exploded bombs; these locations can be found in aerial images taken shortly after bombing. To generate impact maps, in this paper we present a novel approach based on marked point processes (MPPs) for the automatic detection of bomb craters in such images, some of which are overlapping. The object model for the craters is represented by circles and is embedded in the MPP-framework. By means of stochastic sampling, the most likely configuration of objects within the scene is determined. Each configuration is evaluated using an energy function that describes the consistency with a predefined object model. High gradient magnitudes along the object borders and homogeneous grey values inside the objects are favoured, while overlaps between objects are penalized. Reversible Jump Markov Chain Monte Carlo sampling, in combination with simulated annealing, provides the global optimum of the energy function. Our procedure allows the combination of individual detection results covering the same location. Afterwards, a probability map for duds is generated from the detections via kernel density estimation and areas around the detections are classified as contaminated, resulting in an impact map. Our results, based on 74 aerial wartime images taken over different areas in Central Europe, show the potential of the method; among other findings, a clear improvement is achieved by using redundant image information. We also compared the MPP method for bomb crater detection with a state-of-of-the-art convolutional neural network (CNN) for generating region proposals; it turned out that the CNN outperforms the MPPs if a sufficient amount of representative training data is available and a threshold for a region to be considered as crater is properly tuned prior to running the experiments. If this is not the case, the MPP approach achieves better results. Numéro de notice : A2022-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100017 Date de publication en ligne : 02/06/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101057
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022)[article]Change detection in street environments based on mobile laser scanning: A fuzzy spatial reasoning approach / Joachim Gehrung in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
[article]
Titre : Change detection in street environments based on mobile laser scanning: A fuzzy spatial reasoning approach Type de document : Article/Communication Auteurs : Joachim Gehrung, Auteur ; Marcus Hebel, Auteur ; Michael Arens, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] Inférence floue
[Termes IGN] information sémantique
[Termes IGN] logique floue
[Termes IGN] milieu urbain
[Termes IGN] représentation spatiale
[Termes IGN] semis de points
[Termes IGN] voxelRésumé : (auteur) Automated change detection based on urban mobile laser scanning data is the foundation for a whole range of applications such as building model updates, map generation for autonomous driving and natural disaster assessment. The challenge with mobile LiDAR data is that various sources of error, such as localization errors, lead to uncertainties and contradictions in the derived information. This paper presents an approach to automatic change detection using a new category of generic evidence grids that addresses the above problems. Said technique, referred to as fuzzy spatial reasoning, solves common problems of state-of-the-art evidence grids and also provides a method of inference utilizing fuzzy Boolean reasoning. Based on this, logical operations are used to determine changes and combine them with semantic information. A quantitative evaluation based on a hand-annotated version of the TUM-MLS data set shows that the proposed method is able to identify confirmed and changed elements of the environment with F1-scores of 0.93 and 0.89. Numéro de notice : A2022-663 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100019 En ligne : https://doi.org/10.1016/j.ophoto.2022.100019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101524
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022) . - n° 100019[article]