Descripteur
Documents disponibles dans cette catégorie (57)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)
[article]
Titre : Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography Type de document : Article/Communication Auteurs : Ihor Kozak, Auteur ; Mikhail Popov, Auteur ; Igor Semko, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 127793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] forêt urbaine
[Termes IGN] houppier
[Termes IGN] image hémisphérique
[Termes IGN] Leaf Area Index
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] photographie numérique
[Termes IGN] Pinus sylvestris
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] surface terrièreRésumé : (auteur) The article proposes methods for combining Airborne Laser Scanning (ALS) with Digital Hemispherical Photography (DHP) data required by the Urban Forest Biomass (UFB) model to predict the aboveground biomass (AGB) of Scotch pine (Pinus sylvestris L.) in urban forests of Lublin (Poland). The article also demonstrates the potential of ALS and DHP data in urban AGB estimation. ALS and Leaf Area Index (LAI) data were calculated using a voxels-vector approach based on the measurements taken at eight permanent sample plots (PSPs). The research was conducted in 2014 and the prediction was made until 2030. It was found that the determination coefficients (R2) for the Basal Area (BA) of the trees are 0.97, and the BA modeling parameters have a high correlation with those observed in the field (model efficiency (ME) 0.94). 83 % growth trajectory based on the measured BA was appropriately modeled using the UFB model (P > 0.9). The results for AGB show that the degree of fitting and accuracy are greatest for the Monte Carlo (MC) simulation technique based on ALS and DHP data (UBF with ALS and DHP) where R2 = 0.98, RMSE = 2.97 t/ha, MAE = 2.35 t/ha, rRMSE = 1.28 %, which performed better than MC simulation technique without ALS and DHP (UBF without ALS and DHP) where R2 = 0.94, RMSE = 4.58 t/ha, MAE = 3.64 t/ha, rRMSE = 3.29 %. The results indicate that the proposed method based on combining the UFB model, LiDAR and DHP allows us to improve the accuracy of the AGB prediction. Numéro de notice : A2023-023 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ufug.2022.127793 Date de publication en ligne : 23/11/2022 En ligne : https://doi.org/10.1016/j.ufug.2022.127793 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102246
in Urban Forestry & Urban Greening > vol 79 (January 2023) . - n° 127793[article]Tree position estimation from TLS data using hough transform and robust least-squares circle fitting / Maja Michałowska in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)
[article]
Titre : Tree position estimation from TLS data using hough transform and robust least-squares circle fitting Type de document : Article/Communication Auteurs : Maja Michałowska, Auteur ; Jacek Rapinski, Auteur ; Joanna Janicka, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 100863 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] branche (arbre)
[Termes IGN] compensation par moindres carrés
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage du bruit
[Termes IGN] géolocalisation
[Termes IGN] méthode robuste
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] transformation de HoughRésumé : (auteur) Forest management and planning require information regarding the current state of the forest. Remote sensing techniques allow to obtain geospatial data, also for the forestry sector. As one of the remote-sensed technologies datasets, Terrestrial Laser Scanning data is widely used to derive detailed information about tree and forest stand parameters. This article presents the combination of circular Hough transform, denoising procedure, and robust least-square circle fitting method to extract stem positions from Terrestrial Laser Scanning data. In the proposed approach, initial tree stems position was detected with circular Hough transform. Then, obtained results were denoised to exclude most non-tree trunk points and analyze three-dimensional data from laser scanning to find exact circular tree stems with a robust least-square circle fitting method. The developed algorithm is effective in obtaining the trees’ geodetic positions from laser scanning data. The results generated in this study can be used as basics for further automatic determination of tree characteristics, such as tree species, height, or crown range. In this study, 94.8% tree stems delineation was generated with a mean accuracy of 87.2%, 1.64 cm of root mean square error for stem position, and 1.15 cm for tree radius measured at ground level. The process conducted in this research can be used to detect other circle-shaped objects, such as lamps or power towers, for which obtaining dense Terrestrial Laser Scanning data is available. The detected positions of these objects can power the geographic information systems or thematic industry systems, where it is necessary to determine the geodetic object position results from legal regulations. Numéro de notice : A2023-018 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rsase.2022.100863 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.rsase.2022.100863 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102183
in Remote Sensing Applications: Society and Environment, RSASE > vol 29 (January 2023) . - n° 100863[article]Multi-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR / Zhenyang Hui in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : Multi-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR Type de document : Article/Communication Auteurs : Zhenyang Hui, Auteur ; Penggen Cheng, Auteur ; Bisheng Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données matricielles
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] optimisation (mathématiques)
[Termes IGN] Pinophyta
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] semis de pointsRésumé : (auteur) To obtain satisfying results of individual tree detection from LiDAR points, parameters using traditional methods usually need to be adjusted by trials and errors. When encountering complex forest environments, the detection accuracy cannot be satisfied. To resolve this, a multi-level self-adaptive individual tree detection method was presented in this paper. The proposed method can be seen as a hybrid model, which combined the strength of both raster-based and point-based methods. Raster-based strategy was first used for achieving initial trees detection results, while the point-based strategy was adopted for optimizing the clustered trees. In the proposed method, crown width scales were estimated automatically. Meanwhile, multi-scales segmented results were fused together to take advantage of segmented results of both larger and small scales. Six different coniferous forests were adopted for testing. Experimental result shows that this study achieved the lowest omission and commission errors comparing with other three classical approaches. Meanwhile, the average F1 score in this paper is 0.84, which is much highest out of other methods. Numéro de notice : A2022-784 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103028 Date de publication en ligne : 24/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101887
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103028[article]Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest / Daniel Kükenbrink in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)
[article]
Titre : Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest Type de document : Article/Communication Auteurs : Daniel Kükenbrink, Auteur ; Mauro Marty, Auteur ; Ruedi Bösch, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102999 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] caméra à bas coût
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tempérée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar mobile
[Termes IGN] lidar topographique
[Termes IGN] photogrammétrie terrestre
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] Zurich (Suisse)Résumé : (auteur) National forest inventories (NFI) are important for the assessment of the state and development of forests. Traditional NFIs often rely on statistical sampling approaches as well as expert assessment which may suffer from observer bias and may lack robustness for time series analysis. Over the course of the last decade, close-range remote sensing techniques such as terrestrial and mobile laser scanning became ever more established for the assessment of three-dimensional (3D) forest structure. With the ongoing trend to make the systems smaller, easier to use and more efficient, the pathway is being opened for an operational inclusion of such devices within the framework of an NFI to support the traditional field assessment. Close-range remote sensing could potentially speed up field inventory work as well as increase the area in which certain parameters are assessed. Benchmarks are needed to evaluate the performance of different close-range remote sensing devices and approaches, both in terms of efficiency as well as accuracy. In this study we evaluate the performance of two terrestrial (TLS), one handheld mobile (PLS) and two drone based (UAVLS) laser scanning systems to detect trees and extract the diameter at breast height (DBH) in three plots with a steep gradient in tree and understorey vegetation density. As a novelty, we also tested the acquisition of 3D point-clouds using a low-cost action camera (GoPro) in conjunction with the Structure from Motion (SfM) technique and compared its performance with those of the more costly LiDAR devices. Among the many parameters evaluated in traditional NFIs, the focus of the performance evaluation of this study is set on the automatic tree detection and DBH extraction. The results showed that TLS delivers the highest tree detection rate (TDR) of up to 94.6% under leaf-off and up to 82% under leaf-on conditions and a relative RMSE (rRMSE) for the DBH extraction between 2.5 and 9%, depending on the undergrowth complexity. The tested PLS system (leaf-on) achieved a TDR of up to 80% with an rRMSE between 3.7 and 5.8%. The tested UAVLS systems showed lowest TDR of less than 77% under leaf-off and less than 37% under leaf-on conditions. The novel GoPro approach achieved a TDR of up to 53% under leaf-on conditions. The reduced TDR can be explained by the reduced area coverage due to the chosen circular acquisition path taken with the GoPro approach. The DBH extraction performance on the other hand is comparable to those of the LiDAR devices with an rRMSE between 2 and 9%. Further benchmarks are needed in order to fully assess the applicability of these systems in the framework of an NFI. Especially the robustness under varying forest conditions (seasonality) and over a broader range of forest types and canopy structure has to be evaluated. Numéro de notice : A2022-787 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102999 Date de publication en ligne : 05/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102999 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101893
in International journal of applied Earth observation and geoinformation > vol 113 (September 2022) . - n° 102999[article]An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images / Kwanghun Choi in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
[article]
Titre : An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images Type de document : Article/Communication Auteurs : Kwanghun Choi, Auteur ; Wontaek LIM, Auteur ; Byungwoo Chang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] gestion forestière durable
[Termes IGN] image Streetview
[Termes IGN] inventaire de la végétation
[Termes IGN] segmentation sémantique
[Termes IGN] SéoulRésumé : (auteur) Tree species and canopy structural profile (‘tree profile’) are among the most critical environmental factors in determining urban ecosystem services such as climate and air quality control from urban trees. To accurately characterize a tree profile, the tree diameter, height, crown width, and height to the lowest live branch must be all measured, which is an expensive and time-consuming procedure. Recent advances in artificial intelligence aids to efficiently and accurately measure the aforementioned tree profile parameters. This can be particularly helpful if spatially extensive and accurate street-level images provided by Google (‘streetview’) or Kakao (‘roadview’) are utilized. We focused on street trees in Seoul, the capital city of South Korea, and suggested a novel approach to create a tree profile and inventory based on deep learning algorithms. We classified urban tree species using the YOLO (You Only Look Once), one of the most popular deep learning object detection algorithms, which provides an uncomplicated method of creating datasets with custom classes. We further utilized semantic segmentation algorithm and graphical analysis to estimate tree profile parameters by determining the relative location of the interface of tree and ground surface. We evaluated the performance of the model by comparing the estimated tree heights, diameters, and locations from the model with the field measurements as ground truth. The results are promising and demonstrate the potential of the method for creating urban street tree profile inventory. In terms of tree species classification, the method showed the mean average precision (mAP) of 0.564. When we used the ideal tree images, the method also reported the normalized root mean squared error (NRMSE) for the tree height, diameter at breast height (DBH), and distances from the camera to the trees as 0.24, 0.44, and 0.41. Numéro de notice : A2022-503 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.06.004 Date de publication en ligne : 22/06/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.06.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101001
in ISPRS Journal of photogrammetry and remote sensing > vol 190 (August 2022) . - pp 165 - 180[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022081 SL Revue Centre de documentation Revues en salle Disponible 081-2022083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data / Saeideh Sahebi Vayghan in Geocarto international, vol 37 n° 10 ([01/06/2022])PermalinkDirect and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system / Eric Hyyppä in Science of remote sensing, vol 5 (June 2022)PermalinkIndividual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads / Raul de Paula Pires in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)PermalinkAutomatic detection of planted trees and their heights using photogrammetric rpa point clouds / Kênia Samara Mourão Santos in Boletim de Ciências Geodésicas, vol 27 n° 3 ([01/10/2021])PermalinkA comparison of ALS and dense photogrammetric point clouds for individual tree detection in radiata pine plantations / Irfan A. Iqbal in Remote sensing, vol 13 n° 17 (September-1 2021)PermalinkDetection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds / Alwin A. Hardenbol in Silva fennica, vol 55 n° 4 (September 2021)PermalinkTarget-based automated matching of multiple terrestrial laser scans for complex forest scenes / Xuming Ge in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)PermalinkMathematically optimized trajectory for terrestrial close-range photogrammetric 3D reconstruction of forest stands / Karel Kuželka in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)PermalinkIndividual tree identification using a new cluster-based approach with discrete-return airborne LiDAR data / Haijian Liu in Remote sensing of environment, vol 258 (June 2021)PermalinkAutomated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours / Amir Hossein Safaie in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)Permalink