Descripteur
Documents disponibles dans cette catégorie (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Reconstructing compact building models from point clouds using deep implicit fields / Zhaiyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
[article]
Titre : Reconstructing compact building models from point clouds using deep implicit fields Type de document : Article/Communication Auteurs : Zhaiyu Chen, Auteur ; Hugo Ledoux, Auteur ; Seyran Khademi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 58 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] Bâti-3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de modèle
[Termes IGN] image à haute résolution
[Termes IGN] maillage par triangles
[Termes IGN] optimisation (mathématiques)
[Termes IGN] polygone
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (auteur) While three-dimensional (3D) building models play an increasingly pivotal role in many real-world applications, obtaining a compact representation of buildings remains an open problem. In this paper, we present a novel framework for reconstructing compact, watertight, polygonal building models from point clouds. Our framework comprises three components: (a) a cell complex is generated via adaptive space partitioning that provides a polyhedral embedding as the candidate set; (b) an implicit field is learned by a deep neural network that facilitates building occupancy estimation; (c) a Markov random field is formulated to extract the outer surface of a building via combinatorial optimization. We evaluate and compare our method with state-of-the-art methods in generic reconstruction, model-based reconstruction, geometry simplification, and primitive assembly. Experiments on both synthetic and real-world point clouds have demonstrated that, with our neural-guided strategy, high-quality building models can be obtained with significant advantages in fidelity, compactness, and computational efficiency. Our method also shows robustness to noise and insufficient measurements, and it can directly generalize from synthetic scans to real-world measurements. The source code of this work is freely available at https://github.com/chenzhaiyu/points2poly. Numéro de notice : A2022-824 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.017 Date de publication en ligne : 17/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102001
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 58 - 73[article]Mining regional patterns of land use with adaptive adjacent criteria / Xinmeng Tu in Cartography and Geographic Information Science, Vol 47 n° 5 (September 2020)
[article]
Titre : Mining regional patterns of land use with adaptive adjacent criteria Type de document : Article/Communication Auteurs : Xinmeng Tu, Auteur ; Zhenjie Chen, Auteur ; Beibei Wang, Auteur ; changqing Xu, Auteur Année de publication : 2020 Article en page(s) : pp 418 - 431 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] adjacence
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] changement d'utilisation du sol
[Termes IGN] Chine
[Termes IGN] construction
[Termes IGN] extraction de modèle
[Termes IGN] filtrage spatiotemporel
[Termes IGN] occupation du sol
[Termes IGN] polygone
[Termes IGN] région
[Termes IGN] relation spatiale
[Termes IGN] surface cultivée
[Termes IGN] urbanisation
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (auteur) Land use/cover changes (LULC) are complicated and regionally diverse. When mining regional patterns, the use of a spatial relationship that is determined without considering the spatial correlation among geographical objects can lead to problematic results, e.g. mistakenly treating unrelated objects as adjacent. Additionally, traditional prevalence measures are unstable for uneven datasets such as LULC, wherein some land-use change types show small numbers and uneven quantities, and valuable rules for some land-use categories may be ignored. Therefore, we proposed a regional pattern mining method. First, we developed adaptive adjacent criteria, which can be automatically generated for each specific zone to define adjacency for better spatial-temporal mining. Then, a combinational decision model was built to improve the stability of the prevalence measure, which was used to filter out the insignificant spatial-temporal rules. Furthermore, we proposed two levels of land-use pattern mining, i.e. cluster-level mining and polygon-level mining, to first discover hot-spot areas where similar land-use change has occurred frequently and then to determine the location, frequency, and change time of rules related to different land-use activities. The proposed method was used for mining the dependence of land use and regional patterns on land-use changes. Results show that the proposed method can determine the spatial dependence between the land-use categories, as well as regional patterns of land-use changes. According to our research, the study area, Xinbei District, China, is undergoing land-use change involving rapid urbanization, extensive transportation construction, and losses of farmland. Numéro de notice : A2020-487 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1761452 Date de publication en ligne : 18/06/2020 En ligne : https://doi.org/10.1080/15230406.2020.1761452 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95655
in Cartography and Geographic Information Science > Vol 47 n° 5 (September 2020) . - pp 418 - 431[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020051 RAB Revue Centre de documentation En réserve L003 Disponible
Titre : Recent advances in image restoration with applications to real world problems Type de document : Monographie Auteurs : Chiman Kwan, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2020 ISBN/ISSN/EAN : 978-1-83968-356-5 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage non-dirigé
[Termes IGN] données spatiotemporelles
[Termes IGN] extraction de modèle
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] modèle numérique de terrain
[Termes IGN] reconstruction 3D
[Termes IGN] restauration d'imageRésumé : (Editeur) In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included. Note de contenu :
1. Introductory Chapter: Recent Advances in Image Restoration
2. Resolution Enhancement of Hyperspectral Data Exploiting Real Multi-Platform Data
3. Application of Deep Learning Approaches for Enhancing Mastcam Images
4. Generative Adversarial Networks for Visible to Infrared Video Conversion
5. Style-Based Unsupervised Learning for Real-World Face Image Super-Resolution
6. Spatiotemporal Fusion in Remote Sensing
7. 3D Reconstruction through Fusion of Cross-View Images
8. Practical Digital Terrain Model Extraction Using Image Inpainting TechniquesNuméro de notice : 26695 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.90607 Date de publication en ligne : 04/11/2020 En ligne : https://doi.org/10.5772/intechopen.90607 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99081 A simple line clustering method for spatial analysis with origin-destination data and its application to bike-sharing movement data / Biao He in ISPRS International journal of geo-information, vol 7 n° 6 (June 2018)
[article]
Titre : A simple line clustering method for spatial analysis with origin-destination data and its application to bike-sharing movement data Type de document : Article/Communication Auteurs : Biao He, Auteur ; Zhang Yan, Auteur ; Yu Chen, Auteur ; Zhihui Gu, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] bicyclette
[Termes IGN] entropie
[Termes IGN] extraction de modèle
[Termes IGN] origine - destination
[Termes IGN] raisonnement spatial
[Termes IGN] voisinage (relation topologique)Résumé : (Auteur) Clustering methods are popular tools for pattern recognition in spatial databases. Existing clustering methods have mainly focused on the matching and clustering of complex trajectories. Few studies have paid attention to clustering origin-destination (OD) trips and discovering strong spatial linkages via OD lines, which is useful in many areas such as transportation, urban planning, and migration studies. In this paper, we present a new Simple Line Clustering Method (SLCM) that was designed to discover the strongest spatial linkage by searching for neighboring lines for every OD trip within a certain radius. This method adopts entropy theory and the probability distribution function for parameter selection to ensure significant clustering results. We demonstrate this method using bike-sharing location data in a metropolitan city. Results show that (1) the SLCM was significantly effective in discovering clusters at different scales, (2) results with the SLCM analysis confirmed known structures and discovered unknown structures, and (3) this approach can also be applied to other OD data to facilitate pattern extraction and structure understanding. Numéro de notice : A2018-345 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7060203 Date de publication en ligne : 29/05/2018 En ligne : https://doi.org/10.10.3390/ijgi7060203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90568
in ISPRS International journal of geo-information > vol 7 n° 6 (June 2018)[article]Extracting spatial patterns in bicycle routes from crowdsourced data / Jody Sultan in Transactions in GIS, vol 21 n° 6 (December 2017)
[article]
Titre : Extracting spatial patterns in bicycle routes from crowdsourced data Type de document : Article/Communication Auteurs : Jody Sultan, Auteur ; Gev Ben‐Haim, Auteur ; Jan‐Henrik Haunert, Auteur ; Sagi Dalyot, Auteur Année de publication : 2017 Article en page(s) : pp 1321 - 1340 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Amsterdam (Pays-Bas)
[Termes IGN] cycliste
[Termes IGN] données localisées des bénévoles
[Termes IGN] extraction de modèle
[Termes IGN] trace GPS
[Termes IGN] trajet (mobilité)Résumé : (auteur) Much is done nowadays to provide cyclists with safe and sustainable road infrastructure. Its development requires the investigation of road usage and interactions between traffic commuters. This article is focused on exploiting crowdsourced user‐generated data, namely GPS trajectories collected by cyclists and road network infrastructure generated by citizens, to extract and analyze spatial patterns and road‐type use of cyclists in urban environments. Since user‐generated data shows data‐deficiencies, we introduce tailored spatial data‐handling processes for which several algorithms are developed and implemented. These include data filtering and segmentation, map‐matching and spatial arrangement of GPS trajectories with the road network. A spatial analysis and a characterization of road‐type use are then carried out to investigate and identify specific spatial patterns of cycle routes. The proposed analysis was applied to the cities of Amsterdam (The Netherlands) and Osnabrück (Germany), proving its feasibility and reliability in mining road‐type use and extracting pattern information and preferences. This information can help users who wish to explore friendlier and more interesting cycle patterns, based on collective usage, as well as city planners and transportation experts wishing to pinpoint areas most in need of further development and planning. Numéro de notice : A2017-838 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12280 Date de publication en ligne : 06/06/2017 En ligne : https://doi.org/10.1111/tgis.12280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89374
in Transactions in GIS > vol 21 n° 6 (December 2017) . - pp 1321 - 1340[article]