Descripteur
Documents disponibles dans cette catégorie (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Joint promotion partner recommendation systems using data from location-based social networks / Yi-Chung Chen in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
[article]
Titre : Joint promotion partner recommendation systems using data from location-based social networks Type de document : Article/Communication Auteurs : Yi-Chung Chen, Auteur ; Hsi-Ho Huang, Auteur ; Sheng-Min Chiu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 57 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] Facebook
[Termes IGN] Foursquare
[Termes IGN] géomercatique
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] point d'intérêt
[Termes IGN] politique commerciale
[Termes IGN] réseau social géodépendantRésumé : (auteur) Joint promotion is a valuable business strategy that enables companies to attract more customers at lower operational cost. However, finding a suitable partner can be extremely difficult. Conventionally, one of the most common approaches is to conduct survey-based analysis; however, this method can be unreliable as well as time-consuming, considering that there are likely to be thousands of potential partners in a city. This article proposes a framework to recommend Joint Promotion Partners using location-based social networks (LBSN) data. We considered six factors in determining the suitability of a partner (customer base, association, rating and awareness, prices and star ratings, distance, and promotional strategy) and developed efficient algorithms to perform the required calculations. The effectiveness and efficiency of our algorithms were verified using the Foursquare dataset and real-life case studies. Numéro de notice : A2021-152 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10020057 Date de publication en ligne : 30/01/2021 En ligne : https://doi.org/10.3390/ijgi10020057 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97063
in ISPRS International journal of geo-information > vol 10 n° 2 (February 2021) . - n° 57[article]Los Angeles as a digital place: The geographies of user‐generated content / Andrea Ballatore in Transactions in GIS, Vol 24 n° 4 (August 2020)
[article]
Titre : Los Angeles as a digital place: The geographies of user‐generated content Type de document : Article/Communication Auteurs : Andrea Ballatore, Auteur ; Stefano de Sabbata, Auteur Année de publication : 2020 Article en page(s) : 23 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] centre urbain
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] distribution spatiale
[Termes IGN] données multisources
[Termes IGN] données socio-économiques
[Termes IGN] exploration de données géographiques
[Termes IGN] Foursquare
[Termes IGN] Los Angeles
[Termes IGN] modèle de régression
[Termes IGN] OpenStreetMap
[Termes IGN] participation du public
[Termes IGN] représentation géographique
[Termes IGN] réseau social
[Termes IGN] réseau social géodépendant
[Termes IGN] TwitterRésumé : (auteur) Online representations of places are becoming pivotal in informing our understanding of urban life. Content production on online platforms is grounded in the geography of their users and their digital infrastructure. These constraints shape place representation, that is, the amount, quality, and type of digital information available in a geographic area. In this article we study the place representation of user‐generated content (UGC) in Los Angeles County, relating the spatial distribution of the data to its geo‐demographic context. Adopting a comparative and multi‐platform approach, this quantitative analysis investigates the spatial relationship between four diverse UGC datasets and their context at the census tract level (about 685,000 geo‐located tweets, 9,700 Wikipedia pages, 4 million OpenStreetMap objects, and 180,000 Foursquare venues). The context includes the ethnicity, age, income, education, and deprivation of residents, as well as public infrastructure. An exploratory spatial analysis and regression‐based models indicate that the four UGC platforms possess distinct geographies of place representation. To a moderate extent, the presence of Twitter, OpenStreetMap, and Foursquare data is influenced by population density, ethnicity, education, and income. However, each platform responds to different socio‐economic factors and clusters emerge in disparate hotspots. Unexpectedly, Twitter data tend to be located in denser, more deprived areas, and the geography of Wikipedia appears peculiar and harder to explain. These trends are compared with previous findings for the area of Greater London. Numéro de notice : A2020-671 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12600 Date de publication en ligne : 02/01/2020 En ligne : https://doi.org/10.1111/tgis.12600 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96156
in Transactions in GIS > Vol 24 n° 4 (August 2020) . - 23 p.[article]A name‐led approach to profile urban places based on geotagged Twitter data / Juntao Lai in Transactions in GIS, Vol 24 n° 4 (August 2020)
[article]
Titre : A name‐led approach to profile urban places based on geotagged Twitter data Type de document : Article/Communication Auteurs : Juntao Lai, Auteur ; Guy Lansley, Auteur ; James Haworth, Auteur ; Tao Cheng, Auteur Année de publication : 2020 Article en page(s) : 22 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] approche participative
[Termes IGN] données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] espace urbain
[Termes IGN] Foursquare
[Termes IGN] Londres
[Termes IGN] point d'intérêt
[Termes IGN] réseau social
[Termes IGN] réseau social géodépendant
[Termes IGN] site urbain
[Termes IGN] toponyme
[Termes IGN] TwitterRésumé : (auteur) Place is a concept that is fundamental to how we orientate and communicate space in our everyday lives. Crowdsourced social media data present a valuable opportunity to develop bottom‐up inferences of places that are integral to social activities and settings. Conventional location‐led approaches use a predefined spatial unit to associate data and space with places, which cannot capture the richness of urban places (i.e., spatial extents and their dynamic functions). This article develops a name‐led framework to overcome these limitations in using social media data to study urban places. The framework first derives place names from georeferenced Twitter data combining text mining and spatial point pattern analysis, then estimates the spatial extents by spatial clustering, and further extracts their dynamic functions with time, which makes up a complete place profile. The framework is tested on a case study in Camden Borough, London and the results are evaluated through comparisons to the Foursquare point of interest data. This name‐led approach enables the shift from space‐based analysis to place‐based analysis of urban space. Numéro de notice : A2020-670 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12599 Date de publication en ligne : 05/12/2019 En ligne : https://doi.org/10.1111/tgis.12599 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96155
in Transactions in GIS > Vol 24 n° 4 (August 2020) . - 22 p.[article]Graph-based matching of points-of-interest from collaborative geo-datasets / Tessio Novack in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Graph-based matching of points-of-interest from collaborative geo-datasets Type de document : Article/Communication Auteurs : Tessio Novack, Auteur ; Robin Peters, Auteur ; Alexander Zipf, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement de points
[Termes IGN] conflation
[Termes IGN] Foursquare
[Termes IGN] Londres
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] similitudeRésumé : (Auteur) Several geospatial studies and applications require comprehensive semantic information from points-of-interest (POIs). However, this information is frequently dispersed across different collaborative mapping platforms. Surprisingly, there is still a research gap on the conflation of POIs from this type of geo-dataset. In this paper, we focus on the matching aspect of POI data conflation by proposing two matching strategies based on a graph whose nodes represent POIs and edges represent matching possibilities. We demonstrate how the graph is used for (1) dynamically defining the weights of the different POI similarity measures we consider; (2) tackling the issue that POIs should be left unmatched when they do not have a corresponding POI on the other dataset and (3) detecting multiple POIs from the same place in the same dataset and jointly matching these to the corresponding POI(s) from the other dataset. The strategies we propose do not require the collection of training samples or extensive parameter tuning. They were statistically compared with a “naive”, though commonly applied, matching approach considering POIs collected from OpenStreetMap and Foursquare from the city of London (England). In our experiments, we sequentially included each of our methodological suggestions in the matching procedure and each of them led to an increase in the accuracy in comparison to the previous results. Our best matching result achieved an overall accuracy of 91%, which is more than 10% higher than the accuracy achieved by the baseline method. Numéro de notice : A2018-103 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030117 En ligne : https://doi.org/10.3390/ijgi7030117 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89518
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]