Remote sensing . vol 14 n° 11Paru le : 01/06/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierPrecise crop classification of hyperspectral images using multi-branch feature fusion and dilation-based MLP / Haibin Wu in Remote sensing, vol 14 n° 11 (June-1 2022)
[article]
Titre : Precise crop classification of hyperspectral images using multi-branch feature fusion and dilation-based MLP Type de document : Article/Communication Auteurs : Haibin Wu, Auteur ; Huaming Zhou, Auteur ; Aili Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2713 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cultures
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] Perceptron multicoucheRésumé : (auteur) The precise classification of crop types using hyperspectral remote sensing imaging is an essential application in the field of agriculture, and is of significance for crop yield estimation and growth monitoring. Among the deep learning methods, Convolutional Neural Networks (CNNs) are the premier model for hyperspectral image (HSI) classification for their outstanding locally contextual modeling capability, which facilitates spatial and spectral feature extraction. Nevertheless, the existing CNNs have a fixed shape and are limited to observing restricted receptive fields, constituting a simulation difficulty for modeling long-range dependencies. To tackle this challenge, this paper proposed two novel classification frameworks which are both built from multilayer perceptrons (MLPs). Firstly, we put forward a dilation-based MLP (DMLP) model, in which the dilated convolutional layer replaced the ordinary convolution of MLP, enlarging the receptive field without losing resolution and keeping the relative spatial position of pixels unchanged. Secondly, the paper proposes multi-branch residual blocks and DMLP concerning performance feature fusion after principal component analysis (PCA), called DMLPFFN, which makes full use of the multi-level feature information of the HSI. The proposed approaches are carried out on two widely used hyperspectral datasets: Salinas and KSC; and two practical crop hyperspectral datasets: WHU-Hi-LongKou and WHU-Hi-HanChuan. Experimental results show that the proposed methods outshine several state-of-the-art methods, outperforming CNN by 6.81%, 12.45%, 4.38% and 8.84%, and outperforming ResNet by 4.48%, 7.74%, 3.53% and 6.39% on the Salinas, KSC, WHU-Hi-LongKou and WHU-Hi-HanChuan datasets, respectively. As a result of this study, it was confirmed that the proposed methods offer remarkable performances for hyperspectral precise crop classification. Numéro de notice : A2022-539 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14112713 Date de publication en ligne : 05/06/2022 En ligne : https://doi.org/10.3390/rs14112713 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101102
in Remote sensing > vol 14 n° 11 (June-1 2022) . - n° 2713[article]Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve / Michael Lechner in Remote sensing, vol 14 n° 11 (June-1 2022)
[article]
Titre : Combination of Sentinel-1 and Sentinel-2 data for tree species classification in a Central European biosphere reserve Type de document : Article/Communication Auteurs : Michael Lechner, Auteur ; Alena Dostalova, Auteur ; Markus Hollaus, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2687 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] Autriche
[Termes IGN] biosphère
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] espèce végétale
[Termes IGN] feuillu
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] phénologie
[Termes IGN] Pinophyta
[Termes IGN] rapport signal sur bruit
[Termes IGN] réserve forestièreRésumé : (auteur) Microwave and optical imaging methods react differently to different land surface parameters and, thus, provide highly complementary information. However, the contribution of individual features from these two domains of the electromagnetic spectrum for tree species classification is still unclear. For large-scale forest assessments, it is moreover important to better understand the domain-specific limitations of the two sensor families, such as the impact of cloudiness and low signal-to-noise-ratio, respectively. In this study, seven deciduous and five coniferous tree species of the Austrian Biosphere Reserve Wienerwald (105,000 ha) were classified using Breiman’s random forest classifier, labeled with help of forest enterprise data. In nine test cases, variations of Sentinel-1 and Sentinel-2 imagery were passed to the classifier to evaluate their respective contributions. By solely using a high number of Sentinel-2 scenes well spread over the growing season, an overall accuracy of 83.2% was achieved. With ample Sentinel-2 scenes available, the additional use of Sentinel-1 data improved the results by 0.5 percentage points. This changed when only a single Sentinel-2 scene was supposedly available. In this case, the full set of Sentinel-1-derived features increased the overall accuracy on average by 4.7 percentage points. The same level of accuracy could be obtained using three Sentinel-2 scenes spread over the vegetation period. On the other hand, the sole use of Sentinel-1 including phenological indicators and additional features derived from the time series did not yield satisfactory overall classification accuracies (55.7%), as only coniferous species were well separated. Numéro de notice : A2022-540 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14112687 Date de publication en ligne : 03/06/2022 En ligne : https://doi.org/10.3390/rs14112687 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101103
in Remote sensing > vol 14 n° 11 (June-1 2022) . - n° 2687[article]