Forests . vol 13 n° 7Paru le : 01/07/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierAbout tree height measurement: Theoretical and practical issues for uncertainty quantification and mapping / Samuele De petris in Forests, vol 13 n° 7 (July 2022)
[article]
Titre : About tree height measurement: Theoretical and practical issues for uncertainty quantification and mapping Type de document : Article/Communication Auteurs : Samuele De petris, Auteur ; Philippo Sarvia, Auteur ; Enrico Borgogno Mondino, Auteur Année de publication : 2022 Article en page(s) : n°969 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de sensibilité
[Termes IGN] biome
[Termes IGN] carte forestière
[Termes IGN] Google Earth Engine
[Termes IGN] hauteur des arbres
[Termes IGN] incertitude de mesurage
[Termes IGN] modèle de simulation
[Termes IGN] pente
[Termes IGN] statistiques
[Termes IGN] variance
[Vedettes matières IGN] ForesterieRésumé : (auteur) Forest height is a fundamental parameter in forestry. Tree height is widely used to assess a site’s productivity both in forest ecology research and forest management. Thus, a precise height measure represents a necessary step for the estimation of carbon storage at the local, national, and global scales. In this context, error in height measurement necessarily affects the accuracy of related estimates. Ordinarily, forest height is surveyed by ground sampling adopting hypsometers. The latter suffers from many errors mainly related to the correct tree apex identification (not always well visible in dense stands) and to the measurement process itself. In this work, a statistically based operative method for estimating height measurement uncertainty (σH) was proposed using the variance propagation law. Some simulations were performed involving several combinations of terrain slope, tree height, and survey distances by modelling the σH behaviour and its sensitivity to such parameters. Results proved that σH could vary between 0.5 m and up to 20 m (worst case). Sensitivity analysis shows that terrain slopes and distance poorly affect σH, while angles are the main drivers of height uncertainty. Finally, to give a practical example of such deductions, tree height uncertainty was mapped at the global scale using Google Earth Engine and summarized per forest biomes. Results proved that tropical biomes have higher uncertainty (from 1 m to 4 m) while shrublands and tundra have the lowest (under 1 m). Numéro de notice : A2022-546 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f13070969 Date de publication en ligne : 22/06/2022 En ligne : https://doi.org/10.3390/f13070969 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101131
in Forests > vol 13 n° 7 (July 2022) . - n°969[article]Modeling merchantable wood volume using airborne LiDAR metrics and historical forest inventory plots at a provincial scale / Antoine Leboeuf in Forests, vol 13 n° 7 (July 2022)
[article]
Titre : Modeling merchantable wood volume using airborne LiDAR metrics and historical forest inventory plots at a provincial scale Type de document : Article/Communication Auteurs : Antoine Leboeuf, Auteur ; Martin Riopel, Auteur ; Dave Munger, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 985 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] densité du bois
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] parcelle forestière
[Termes IGN] placette d'échantillonnage
[Termes IGN] Québec (Canada)
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) So far, large-scale projects aiming to map forest attributes using aerial LiDAR data have been developed using ground sample plots acquired synchronously with LiDAR. No large projects have been developed using aerial LiDAR acquired independent of ground sample plot datasets. The goal of this study was to develop and validate large-scale parametric merchantable wood volume estimation models using existing historical ground sample plots. The models can be applied to large LiDAR datasets to map merchantable wood volume as a 10 × 10 m raster. The study demonstrated that a relative density index (RDI) based on a self-thinning equation and dominant height were suitable variables that can be calculated both for ground sample plots and LiDAR datasets. The resulting volume raster showed sound accuracy rates when compared to validation zones: R², 82.25%; RMSE, 13.7 m3/ha; and bias, −4.09 m3/ha. The results show that ground sample plot datasets acquired synchronously with LiDAR can be used to calculate the RDI and dominant height. These variables can consequently be used to map forest attributes over a large area with a high level of accuracy, thus not requiring the implementation of new costly sample plots. Numéro de notice : A2022-547 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13070985 Date de publication en ligne : 23/06/2022 En ligne : https://doi.org/10.3390/f13070985 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101132
in Forests > vol 13 n° 7 (July 2022) . - n° 985[article]