ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) . vol 11 n° 7Paru le : 01/07/2022 |
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierGeographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
[article]
Titre : Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis Type de document : Article/Communication Auteurs : Chuan Yin, Auteur ; Binyu Zhang, Auteur ; Wanzeng Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 360 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] attribut sémantique
[Termes IGN] granularité (informatique)
[Termes IGN] granularité d'image
[Termes IGN] matrice de co-occurrence
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] relation sémantique
[Termes IGN] réseau sémantique
[Termes IGN] synonymieRésumé : (auteur) Expansion of the entity attribute information of geographic knowledge graphs is essentially the fusion of the Internet’s encyclopedic knowledge. However, it lacks structured attribute information, and synonymy and polysemy always exist. These reduce the quality of the knowledge graph and cause incomplete and inaccurate semantic retrieval. Therefore, we normalize the attributes of a geographic knowledge graph based on optimal granularity clustering and co-occurrence analysis, and use structure and the semantic relation of the entity attributes to identify synonymy and correlation between attributes. Specifically: (1) We design a classification system for geographic attributes, that is, using a community discovery algorithm to classify the attribute names. The optimal clustering granularity is identified by the marker target detection algorithm. (2) We complete the fine-grained identification of attribute relations by analyzing co-occurrence relations of the attributes and rule inference. (3) Finally, the performance of the system is verified by manual discrimination using the case of “landscape, forest, field, lake and grass”. The results show the following: (1) The average precision of spatial relations was 0.974 and the average recall was 0.937; the average precision of data relations was 0.977 and the average recall was 0.998. (2) The average F1 for similarity results is 0.473; the average F1 for co-occurrence analysis results is 0.735; the average F1 for rule-based modification results is 0.934; the results show that the accuracy is greater than 90%. Compared to traditional methods only focusing on similarity, the accuracy of synonymous attribute recognition improves the system and we are capable of identifying near-sense attributes. Integration of our system and attribute normalization can greatly improve both the processing efficiency and accuracy. Numéro de notice : A2022-548 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11070360 Date de publication en ligne : 23/06/2022 En ligne : https://doi.org/10.3390/ijgi11070360 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101149
in ISPRS International journal of geo-information > vol 11 n° 7 (July 2022) . - n° 360[article]Spatial-temporal attentive LSTM for vehicle-trajectory prediction / Rui Jiang in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
[article]
Titre : Spatial-temporal attentive LSTM for vehicle-trajectory prediction Type de document : Article/Communication Auteurs : Rui Jiang, Auteur ; Hongyun Xu, Auteur ; Gelian Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 354 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] données spatiotemporelles
[Termes IGN] navigation autonome
[Termes IGN] relation spatiale
[Termes IGN] système de transport intelligent
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] vision par ordinateurRésumé : (auteur) Vehicle-trajectory prediction is essential for intelligent traffic systems (ITS), as it can help autonomous vehicles to plan a safe and efficient path. However, it is still a challenging task because existing studies have mainly focused on the spatial interactions of adjacent vehicles regardless of the temporal dependencies. In this paper, we propose a spatial-temporal attentive LSTM encoder–decoder model (STAM-LSTM) to predict vehicle trajectories. Specifically, the spatial attention mechanism is used to capture the spatial relationships among neighboring vehicles and then obtain the global spatial feature. Meanwhile, the temporal attention mechanism is designed to distinguish the effects of different historical time steps on future trajectory prediction. In addition, the motion feature of vehicles is extracted to reveal the influence of dynamic information on vehicle-trajectory prediction, and is combined with the local and global spatial features to represent the integrated features of the target vehicle at each historical moment. The experiments were conducted on public highway trajectory datasets—US-101 and I-80 in NGSIM—and the results demonstrate that our model achieves state-of-the-art prediction performance. Numéro de notice : A2022-549 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11070354 Date de publication en ligne : 21/06/2022 En ligne : https://doi.org/10.3390/ijgi11070354 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101150
in ISPRS International journal of geo-information > vol 11 n° 7 (July 2022) . - n° 354[article]