Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique systématique > Tracheophyta > Spermatophytina > Angiosperme > Dicotylédone vraie > Rubiaceae > Coffea (genre) > Coffea arabica
Coffea arabica |
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Assessing the structural differences between tropical forest types using Terrestrial Laser Scanning / Mathieu Decuyper in Forest ecology and management, vol 429 (1 December 2018)
[article]
Titre : Assessing the structural differences between tropical forest types using Terrestrial Laser Scanning Type de document : Article/Communication Auteurs : Mathieu Decuyper, Auteur ; Kalkidan Ayele Mulatu, Auteur ; Benjamin Brede, Auteur ; Kim Calders, Auteur ; John Armston, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 327 - 335 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] Coffea (genre)
[Termes IGN] Coffea arabica
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Ethiopie
[Termes IGN] forêt tropicale
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] sylvopastoralismeRésumé : (Auteur) Increasing anthropogenic pressure leads to loss of habitat through deforestation and degradation in tropical forests. While deforestation can be monitored relatively easily, forest management practices are often subtle processes, that are difficult to capture with for example satellite monitoring. Conventional measurements are well established and can be useful for management decisions, but it is believed that Terrestrial Laser Scanning (TLS) has a role in quantitative monitoring and continuous improvement of methods. In this study we used a combination of TLS and conventional forest inventory measures to estimate forest structural parameters in four different forest types in a tropical montane cloud forest in Kafa, Ethiopia. Here, the four forest types (intact forest, coffee forest, silvopasture, and plantations) are a result of specific management practices (e.g. clearance of understory in coffee forest), and not different forest communities or tree types. Both conventional and TLS derived parameters confirmed our assumptions that intact forest had the highest biomass, silvopasture had the largest canopy gaps, and plantations had the lowest canopy openness. Contrary to our expectations, coffee forest had higher canopy openness and similar biomass as silvopasture, indicating a significant loss of forest structure. The 3D vegetation structure (PAVD – Plant area vegetation density) was different between the forest types with the highest PAVD in intact forest and plantation canopy. Silvopasture was characterised by a low canopy but high understorey PAVD, indicating regeneration of the vegetation and infrequent fuelwood collection and/or non-intensive grazing. Coffee forest canopy had low PAVD, indicating that many trees had been removed, despite coffee needing canopy shade. These findings may advocate for more tangible criteria such as canopy openness thresholds in sustainable coffee certification schemes. TLS as tool for monitoring forest structure in plots with different forest types shows potential as it can capture the 3D position of the vegetation volume and open spaces at all heights in the forest. To quantify changes in different forest types, consistent monitoring of 3D structure is needed and here TLS is an add-on or an alternative to conventional forest structure monitoring. However, for the tropics, TLS-based automated segmentation of trees to derive DBH and biomass is not widely operational yet, nor is species richness determination in forest monitoring. Integration of data sources is needed to fully understand forest structural diversity and implications of forest management practices on different forest types. Numéro de notice : A2018-467 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2018.07.032 Date de publication en ligne : 23/07/2018 En ligne : https://doi.org/10.1016/j.foreco.2018.07.032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91146
in Forest ecology and management > vol 429 (1 December 2018) . - pp 327 - 335[article]Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data / Abel Chemura in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
[article]
Titre : Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data Type de document : Article/Communication Auteurs : Abel Chemura, Auteur ; Onisimo Mutanga, Auteur ; John Odindi, Auteur ; Dumisani Kutywayo, Auteur Année de publication : 2018 Article en page(s) : pp 1 - 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agriculture de précision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Coffea arabica
[Termes IGN] feuille (végétation)
[Termes IGN] image Sentinel-MSI
[Termes IGN] nutriment végétal
[Termes IGN] teneur en azoteRésumé : (auteur) Nitrogen (N) is the most limiting factor to coffee development and productivity. Therefore, development of rapid, spatially explicit and temporal remote sensing-based approaches to determine spatial variability of coffee foliar N are imperative for increasing yields, reducing production costs and mitigating environmental impacts associated with excessive N applications. This study sought to assess the value of Sentinel-2 MSI spectral bands and vegetation indices in empirical estimation of coffee foliar N content at landscape level. Results showed that coffee foliar N is related to Sentinel-2 MSI B4 (R2 = 0.32), B6 (R2 = 0.49), B7 (R2 = 0.42), B8 (R2 = 0.57) and B12 (R2 = 0.24) bands. Vegetation indices were more related to coffee foliar N as shown by the Inverted Red-Edge Chlorophyll Index – IRECI (R2 = 0.66), Relative Normalized Difference Index – RNDVI (R2 = 0.48), CIRE1 (R2 = 0.28), and Normalized Difference Infrared Index – NDII (R2 = 0.37). These variables were also identified by the random forest variable optimisation as the most valuable in coffee foliar N prediction. Modelling coffee foliar N using vegetation indices produced better accuracy (R2 = 0.71 with RMSE = 0.27 for all and R2 = 0.73 with RMSE = 0.25 for optimized variables), compared to using spectral bands (R2 = 0.57 with RMSE = 0.32 for all and R2 = 0.58 with RMSE = 0.32 for optimized variables). Combining optimized bands and vegetation indices produced the best results in coffee foliar N modelling (R2 = 0.78, RMSE = 0.23). All the three best performing models (all vegetation indices, optimized vegetation indices and combining optimal bands and optimal vegetation indices) established that 15.2 ha (4.7%) of the total area under investigation had low foliar N levels ( Numéro de notice : A2018-145 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.02.004 Date de publication en ligne : 10/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.02.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89753
in ISPRS Journal of photogrammetry and remote sensing > vol 138 (April 2018) . - pp 1 - 11[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018043 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Developing detailed age-specific thematic maps for coffee (Coffea arabica L.) in heterogeneous agricultural landscapes using random forests applied on Landsat 8 multispectral sensor / Abel Chemura in Geocarto international, vol 32 n° 7 (July 2017)
[article]
Titre : Developing detailed age-specific thematic maps for coffee (Coffea arabica L.) in heterogeneous agricultural landscapes using random forests applied on Landsat 8 multispectral sensor Type de document : Article/Communication Auteurs : Abel Chemura, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2017 Article en page(s) : pp 759 - 776 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte agricole
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Coffea arabica
[Termes IGN] cultures
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] précision de la classification
[Termes IGN] rayonnement proche infrarougeRésumé : (Auteur) Coffee is a commodity of international trade significance, and its value chain can benefit from age-specific thematic maps. This study aimed to assess the potential of Landsat 8 OLI to develop these maps. Using field-collected samples with the random forest classifier, splitting coffee into three age classes (Scheme A) was compared with running the classification with one compound coffee class (Scheme B). Higher overall classification accuracy was obtained in Scheme B (90.3% for OLI and 86.8% for ETM+) than in Scheme A (86.2% for OLI and 81.0% for ETM+). The NIR band of OLI was the most important band in intra-class discrimination of coffee. Landsat 8 OLI mapped area closely matched farm records (R2 = 0.88) compared to that of Landsat 7 ETM+ (R2 = 0.78). It was concluded that Landsat 8 OLI data can be used to produce age-specific thematic maps in coffee production areas although disaggregating coffee classes reduces overall accuracy. Numéro de notice : A2017-454 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1178812 Date de publication en ligne : 03/05/2016 En ligne : http://dx.doi.org/10.1080/10106049.2016.1178812 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86374
in Geocarto international > vol 32 n° 7 (July 2017) . - pp 759 - 776[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2017071 RAB Revue Centre de documentation En réserve L003 Disponible