Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique systématique > Tracheophyta > Spermatophytina > Angiosperme > Dicotylédone vraie > Malvaceae > Gossypium (genre)
Gossypium (genre)Synonyme(s)cotonnierVoir aussi |
Documents disponibles dans cette catégorie (19)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method / Juan Vicente Liendro Moncada in Geocarto international, Vol 37 n° 17 ([20/08/2022])
[article]
Titre : Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method Type de document : Article/Communication Auteurs : Juan Vicente Liendro Moncada, Auteur ; Tonny José Araújo da Silva, Auteur ; Jefferson Vieira José, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 5133 - 5149 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] carte thématique
[Termes IGN] corrélation
[Termes IGN] données météorologiques
[Termes IGN] évapotranspiration
[Termes IGN] Gossypium (genre)
[Termes IGN] GRASS
[Termes IGN] image Landsat-8
[Termes IGN] Mato Grosso
[Termes IGN] modèle de Monteith
[Termes IGN] phénologie
[Termes IGN] QGIS
[Termes IGN] régression logistique
[Termes IGN] système d'information géographiqueRésumé : (auteur) The objective was to compare the evapotranspiration of cotton (Gossypium sp. L.) estimated by the SEBAL model and the FAO-56 method, throughout the phenological cycle of the plant on eight fields located in the upper area of the Rio das Mortes basin, State of Mato Grosso—Brazil. Images from the Landsat 8 satellite were used under the Geographic Information Systems environment through the capabilities of the QGIS 3.6.2 and GRASS 7.6.1 software. The reference evapotranspiration was determined by the FAO Penman–Monteith method implementing the Ref-ET software and data from the Campo Verde meteorological station of INMET—Brazil. The R software was applied to the statistical analyses of correlation and regression. The dataset of the available stages of the cotton phenological cycle shows a strong positive correlation, with approximately 68% of the evapotranspiration variation of the SEBAL model related to the estimates of the FAO-56 method. Numéro de notice : A2022-700 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920633 Date de publication en ligne : 06/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101559
in Geocarto international > Vol 37 n° 17 [20/08/2022] . - pp 5133 - 5149[article]A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery / Lan Xun in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
[article]
Titre : A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery Type de document : Article/Communication Auteurs : Lan Xun, Auteur ; Jiahua Zhang, Auteur ; Dan Cao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 148 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie automatique
[Termes IGN] Chine
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] distribution spatiale
[Termes IGN] Etats-Unis
[Termes IGN] Gossypium (genre)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] polarisation
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelleRésumé : (auteur) Cotton is an important cash crop in the world, as the main source of natural and renewable fiber for textiles. Accurate and timely monitoring of the cotton distribution is crucial for cotton cultivation management and international trade. However, most of the previous researches on cotton identification using remotely sensed images are highly dependent on training samples, and the collection of samples is time-consuming and expensive. To overcome this limitation, a new index, termed as Cotton Mapping Index (CMI), was developed in this study for automatic cotton mapping using time series of Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 Multispectral Instrument (MSI) satellite data. Four sites in the United States (U.S.) and four sites in China were selected to develop and assess the performance of the CMI. The spectral characteristics derived from Sentinel-2 and backscattering coefficients derived from Sentinel-1 for cotton and non-cotton crops during the cotton growth period were analyzed. Considering the phenology differences of crops in different regions, the features at an adaptive window were adopted to construct the CMI. The results showed that at the peak greenness period, the multiplication of red-edge 1 and red-edge 2 band for cotton samples were much larger than those for non-cotton samples, whereas the spectral angle at the red band as well as the absolute values of backscattering coefficients in vertical transmit and vertical receive (VV) polarization for cotton samples were much smaller than those for non-cotton samples. Based on these findings, the CMI was developed to identify cotton cultivated area within the cropland area. The overall accuracy of classification results for the sites in the U.S. was higher than 81.20%, and the mean relative error for the sites in Xinjiang of China was 26.69%. The CMI, which incorporated optical and radar features, had a better performance than the indices using optical features solely. The advantage of the CMI over supervised classifiers (i.e., k-nearest neighbors, support vector machine and random forest) is that no training samples are required. Moreover, the cotton distribution map can be obtained before the harvest using the CMI. These results indicated the potential of the CMI for cotton mapping. The applicability of CMI in other regions with different cropping systems and crop types needs to be further assessed in the future study. Numéro de notice : A2021-775 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.021 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98836
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 148 - 166[article]Quantification of cotton water consumption by remote sensing / Jefferson Vieira José in Geocarto international, vol 35 n° 16 ([01/12/2020])
[article]
Titre : Quantification of cotton water consumption by remote sensing Type de document : Article/Communication Auteurs : Jefferson Vieira José, Auteur ; Niclene Ponce Rodrigues de Oliveira, Auteur ; Tonny José Araújo da Silva, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1800 - 1813 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] biome
[Termes IGN] cultures irriguées
[Termes IGN] évapotranspiration
[Termes IGN] gestion de l'eau
[Termes IGN] Gossypium (genre)
[Termes IGN] image thermique
[Termes IGN] irrigation
[Termes IGN] Leaf Area Index
[Termes IGN] Mato GrossoRésumé : (auteur) Quantifying crop water consumption is essential for water resource management. The objective was to estimate the current evapotranspiration (ETa) of the cotton crop (Gossypium hirsutum L.) in the rainfed system, as well as the components of the radiation and energy balance in the Cerrado biome conditions using orbital images and the SEBAL algorithm and validate the estimates of evapotranspiration (ET) using FAO guidelines for crop coefficient (K c) of the cotton crop. Research was carried out in the State of Mato Grosso, Brazil, in areas with three cotton cultivars. Images of the Operational Land Imager and Thermal Infrared Sensor sensors were used and ET estimation was made based on the SEBAL algorithm. Mean ETa in the cotton cycle was 3.5 mm dia−1 and the K c values ranged from 0.22 and 1.12, on average, in the smaller and larger leaf area, respectively. Numéro de notice : A2020-726 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583777 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583777 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96329
in Geocarto international > vol 35 n° 16 [01/12/2020] . - pp 1800 - 1813[article]Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data / Dipanwita Haldar in Geocarto international, vol 35 n° 4 ([15/03/2020])
[article]
Titre : Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data Type de document : Article/Communication Auteurs : Dipanwita Haldar, Auteur ; Viral Dave, Auteur ; Arundhati Misra, Auteur ; Bimal Bhattacharya, Auteur Année de publication : 2020 Article en page(s) : pp 364 - 375 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse
[Termes IGN] cultures
[Termes IGN] Gossypium (genre)
[Termes IGN] image Risat-1
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] modèle de simulation
[Termes IGN] polarisation
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétation
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Periodic crop condition monitoring is of prime importance in cotton belt of western India for water stress management. In this article, vegetation water content (VWC) is assessed using Radar Vegetation Index (RVI) derived from the RISAT-1 data during July to September, vegetative to first picking phase, for utilizing its potential for large area cotton condition assessment. The RVI estimation from dual-polarized data has been demonstrated for regional applications. Prediction models of VWC for cotton crop using RVI and in situ ground measurements depicts significant relationship, with R2 varying from 0.5 to 0.6 and RMSE of 0.3–0.7 kg m−2. High correlation exists between RVI with crop age and crop biomass with R2 varying from 0.55 to 0.7, this proves useful for sowing date prediction. The results showed good validation (R2 = 0.8) for operational applications. The estimated VWC was found with 30–35% error above 4 kg m−2 biomasses as compared to 20–25% in lower ranges. Numéro de notice : A2020-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1516249 Date de publication en ligne : 01/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1516249 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95118
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 364 - 375[article]Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering / Shangpeng Sun in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering Type de document : Article/Communication Auteurs : Shangpeng Sun, Auteur ; Changying Li, Auteur ; Peng Wah Chee, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 195 - 207 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] cartographie 3D
[Termes IGN] classification basée sur les régions
[Termes IGN] distribution spatiale
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] gestion de production
[Termes IGN] Gossypium (genre)
[Termes IGN] phénologie
[Termes IGN] rendement agricole
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] surveillance de la végétationRésumé : (Auteur) Three-dimensional high throughput plant phenotyping techniques provide an opportunity to measure plant organ-level traits which can be highly useful to plant breeders. The number and locations of cotton bolls, which are the fruit of cotton plants and an important component of fiber yield, are arguably among the most important phenotypic traits but are complex to quantify manually. Hence, there is a need for effective and efficient cotton boll phenotyping solutions to support breeding research and monitor the crop yield leading to better production management systems. We developed a novel methodology for 3D cotton boll mapping within a plot in situ. Point clouds were reconstructed from multi-view images using the structure from motion algorithm. The method used a region-based classification algorithm that successfully accounted for noise due to sunlight. The developed density-based clustering method could estimate boll counts for this situation, in which bolls were in direct contact with other bolls. By applying the method to point clouds from 30 plots of cotton plants, boll counts, boll volume and position data were derived. The average accuracy of boll counting was up to 90% and the R2 values between fiber yield and boll number, as well as fiber yield and boll volume were 0.87 and 0.66, respectively. The 3D boll spatial distribution could also be analyzed using this method. This method, which was low-cost and provided improved site-specific data on cotton bolls, can also be applied to other plant/fruit mapping analysis after some modification. Numéro de notice : A2020-048 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.011 Date de publication en ligne : 25/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94561
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 195 - 207[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data / W. Silva in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 5 (September - October 2009)PermalinkTraining set size requirements for the classification of a specific class / Giles M. Foody in Remote sensing of environment, vol 104 n° 1 (15/09/2006)PermalinkSurveillance des sols dans l'environnement par télédétection et Systèmes d'Information Géographiques / R. Escadafal (1996)PermalinkAgriculture, agrometeorological aspects of crops in Iitaly, Spain and Greece / G. Narciso (1992)PermalinkComparison of two models for simulating the soil-vegetation composite reflectance of a developing cotton canopy / A.J. Richardson in International Journal of Remote Sensing IJRS, vol 11 n° 3 (March 1990)PermalinkGround and aircraft infrared observations over a partially-vegetated area / W.P. Kustas in International Journal of Remote Sensing IJRS, vol 11 n° 3 (March 1990)PermalinkThe relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves / W.D. Bowman in Remote sensing of environment, vol 30 n° 3 (01/12/1989)PermalinkRadiometric monitoring of moisture stress in irrigated cotton / P. Collier in International Journal of Remote Sensing IJRS, vol 10 n° 8 (August 1989)PermalinkCanopy leaf display effects on absorbed, transmitted, and reflected solar radiation / A.J. Richardson in Remote sensing of environment, vol 29 n° 1 (July 1989)PermalinkModelling planting configuration and canopy architecture effects on diurnal light absorption changes in cotton / A.J. Richardson in International Journal of Remote Sensing IJRS, vol 9 n° 4 (April 1988)Permalink