[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierAssessing and mapping landslide susceptibility using different machine learning methods / Osman Orhan in Geocarto international, vol 37 n° 10 ([01/06/2022])
[article]
Titre : Assessing and mapping landslide susceptibility using different machine learning methods Type de document : Article/Communication Auteurs : Osman Orhan, Auteur ; Suleyman Sefa Bilgilioglu, Auteur ; Zehra Kaya, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2795 - 2820 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] carte thématique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] effondrement de terrain
[Termes IGN] lithologie
[Termes IGN] pente
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] séparateur à vaste marge
[Termes IGN] TurquieRésumé : (auteur) The main aim of the present study was to produce and compare landslide susceptibility maps by using five machine learning techniques, namely, artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), random forest (RF) and, classification and regression tree (CART). The study area was determined as the Arhavi-Kabisre river basin, a region in which the most landslide incidents occur in Turkey. Firstly, a landslide inventory was produced by identifying a total of 252 landslides. Secondly, a total of 11 landslide conditioning factors were considered for the landslide susceptibility mapping. Subsequently, the five machine learning techniques were constructed with the help of the training dataset for the landslide susceptibility maps. Finally, the receiver operating characteristic (ROC), sensitivity, specificity, F-measure, accuracy and kappa index were applied to compare and validate the performance of the five machine learning techniques. Numéro de notice : A2022-594 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1837258 Date de publication en ligne : 30/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1837258 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101298
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2795 - 2820[article]Variance based fusion of VCI and TCI for efficient classification of agriculture drought using MODIS data / Anjana N.J. Kukunuri in Geocarto international, vol 37 n° 10 ([01/06/2022])
[article]
Titre : Variance based fusion of VCI and TCI for efficient classification of agriculture drought using MODIS data Type de document : Article/Communication Auteurs : Anjana N.J. Kukunuri, Auteur ; Deepak Murugan, Auteur ; Dharmendra Singh, Auteur Année de publication : 2022 Article en page(s) : pp 2871 - 2892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] évapotranspiration
[Termes IGN] image Terra-MODIS
[Termes IGN] Inde
[Termes IGN] indice de stress
[Termes IGN] indice de végétation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] précipitation
[Termes IGN] réflectance spectrale
[Termes IGN] sécheresse
[Termes IGN] stress hydriqueRésumé : (auteur) Overall health condition of the vegetation is obtained by combining satellite data derived moisture and thermal stresses present in vegetation condition index (VCI) and thermal condition index (TCI), respectively and improves the accuracy of drought classification. Although vegetation health index fuses the information present in VCI and TCI, the relative contribution of each index depends on prior knowledge of the study area. Therefore, the random weighing method is used to obtain optimal weights of VCI and TCI based on variances of individual indices. The obtained fusion results of a normal and drought year demonstrate that the random weighing fusion achieves better estimation of agriculture drought without requiring apriori information and the obtained drought classification results are in line with the available ground truth precipitation records. In addition, the correlation analysis of the obtained optimal weights and standardized precipitation evapotranspiration index exhibited a strong correlation with a Pearson’s correlation coefficient of above 0.8. The study also showed that the relative contribution of VCI is prevalent in normal conditions while TCI in dry to extreme dry conditions. Numéro de notice : A2022-595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1837256 Date de publication en ligne : 02/11/2020 En ligne : https://doi.org/10.1080/10106049.2020.1837256 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101299
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2871 - 2892[article]Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data / Saeideh Sahebi Vayghan in Geocarto international, vol 37 n° 10 ([01/06/2022])
[article]
Titre : Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data Type de document : Article/Communication Auteurs : Saeideh Sahebi Vayghan, Auteur ; Mohammad Salmani, Auteur ; Neda Ghasemkhanic, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2967 - 2995 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme génétique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection d'arbres
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] image aérienne
[Termes IGN] image optique
[Termes IGN] Inférence floue
[Termes IGN] morphologie mathématiqueRésumé : (auteur) One of the most important considerations in urban environments is the extraction of urban objects, with a high automation level. This study aims to present a new method which uses aerial images and LiDAR data to extract buildings and trees footprint in urban areas. In this study, high-elevation objects were extracted from the LiDAR data using the developed scan labeling method, and then the classification methods of Neural Networks (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Genetic Based K-Means algorithm (GBKMs) were used to separate buildings and trees and with the purpose of evaluating their performance. The features used for the classification were extracted from aerial images and LiDAR data, and the training data for the classification were selected automatically. Mathematical morphology functions were also used to process the classification results. The results show that NN and the ANFIS are more effective than the genetic-based K-Means algorithm in detecting small and large buildings. Numéro de notice : A2022-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1844311 En ligne : https://doi.org/10.1080/10106049.2020.1844311 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101300
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2967 - 2995[article]Glacier mass loss in the Alaknanda basin, Garhwal Himalaya on a decadal scale / S.N. Remya in Geocarto international, vol 37 n° 10 ([01/06/2022])
[article]
Titre : Glacier mass loss in the Alaknanda basin, Garhwal Himalaya on a decadal scale Type de document : Article/Communication Auteurs : S.N. Remya, Auteur ; Anil V. Kulkarni, Auteur ; Tajdarul Hassan Syed, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3014 - 3032 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] altitude
[Termes IGN] analyse diachronique
[Termes IGN] bilan de masse
[Termes IGN] carte choroplèthe
[Termes IGN] changement climatique
[Termes IGN] fonte des glaces
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Cartosat-1
[Termes IGN] MNS SRTM
[Termes IGN] point d'appuiRésumé : (auteur) The Himalayan glaciers significantly contribute to the largest river systems like the Indus, Ganga, and the Brahmaputra. The change in glacial area and mass can affect the mountain community and people living in the Indo-Gangetic plain. The present study adopted the geodetic method to estimate the elevation change and mass budget of 61 glaciers in the Alaknanda Basin, using the satellite data of Cartosat-1 (2011, 2014, 2017) and SRTM (2000). Besides, the DEM of 1962 (SOI Toposheet) and 2000 (SRTM) is used to estimate the mass budget of Satopanth (SPG) and Bhagirath Kharak glaciers (BKG). The field debris thickness of SPG (2015-2017) is compared with the elevation change (2000-2017). Further, we have compared the mass loss of the glaciers with their volume. The results suggest the sustained mass loss of 1.85 ± 0.10 Gt out of 33.9 ± 8.8 Gt for 61 glaciers in the basin from 2000-2017. The mass loss of SPG and BKG during 2000-2017 is 0.20 ± 0.02 Gt and 0.24 ± 0.03 Gt, whereas from 1962 to 2000, is 0.083 ± 0.03 Gt and 0.091 ± 0.04 Gt, respectively. The analysis facilitates a better understanding of glacier mass changes in the Alaknanda basin on a multi-decadal scale. Numéro de notice : A2022-597 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1844309 En ligne : https://doi.org/10.1080/10106049.2020.1844309 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101301
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 3014 - 3032[article]